Arrangements of Conic Arcs

Athanasios KAKARGIAS

a joint work with

Elias TSIGARIDAS Ioannis EMIRIS Monique TEILLAUD Sylvain PION

2004

Outline

- 1. Arrangements Intro
- 2. CGAL Introduction
- 3. The Curved Kernel
- 4. The Algebraic Kernel
- 5. The Arrangement Traits

Arrangement of Lines

Arrangement of Circular Arcs

Arrangement of Circular Arcs

Details

Arrangement of Elliptic Arcs

CGAL Introduction

Program anatomy

Library anatomy

Adaptors : Traits classes

Concepts, Models

in short

- Concepts define Interfaces and reside in the documentation
- Models provide Implementation and reside in the sources

The Geometric Primitives

A collection that contains among others

- Point
- Line
- Segment
- Circle
- Conic

The basic Geometric Data Structures

a collection that contains among others

- Polygons
- Half-edge data structures
- Topological maps
- Triangulations
- Multidimensional search trees

The Geometric Algorithms

are parametrized by

- The Data Structures
- A Traits class

The Traits classes

define interface between

- The Data Structures
- Algorithm
- Primitives

The Kernel

factoring out common Traits functionality

The Geometric Kernel

groups

- constant-size non-modifiable Geometric Primitive objects (Point, Line)
- operations on the above objects (ccw(), less_xy())

has models

- CGAL::Cartesian
- CGAL::Homogeneous

extending/exchanging the Kernel

The Curved Kernel

The Curved Kernel

is parametrized by

- A Linear Kernel (Circles, Conics, Points)
- An Algebraic Kernel (Algebraic Number Type, Equation Type)

extends/defines

- Conic
- Conic arcs
- Intersection, End Points of Conics

The Conic

is extended to

- Operate with Conic arc Endpoints
- Provide the implicit equation

The Conic arc

is defined by

- A supporting Conic
- A pair of Conic arc Endpoints

The Conic arc Endpoint

is defined by

- A pair of Conics that intersect on this point (implicit representation)
- A Point with coordinates of Algebraic NT (explicit representation)

The Algebraic Kernel

The Algebraic Kernel

is parametrized by

• A ring number type

defines

- Bivariate polynomials
- Algebraic numbers of degree up to 4

has model

• ECG::Synaps_kernel

Bivariate Polynomial

supports

- Sign at a pair of algebraic numbers
- Symbolic solve producing pairs of algebraic numbers
- Derivative wrt y

has models

- Synaps::BPoly_2_2
- Synaps::mpol

Algebraic Number Type

supports

- Three valued comparisons
- Sign

has models

- Synaps::root_of
- leda::real (with diamond operator)
- CORE::Expr

Algebraic Predicates

- Sign compare(RootOf , RootOf)
- Sign sign(RootOf)
- Sign sign_at(BPoly , Pair < RootOf >)
- Sequence< Pair< RootOf >> solve(BPoly , BPoly)

The Arrangement Traits

The Arrangement Traits

defines

- An x monotone curve
- Geometric Predicates on x monotone curves

has model

- ECG::Conic_arc_traits
- CGAL::Arr_conic_traits_2

Geometric Predicates for Arrangement of curves

- Point comparisons in x, y and xy order
- Curve comparisons in y order
- Curve Point comparisons in x and y order
- Curve Curve intersection
- Curve test/make x monotone
- Curve split at a point

Nearest Intersection to the right

- Algebraic::solve
- Algebraic::compare

Point, Curve Compare y at x

- Algebraic::sign_at
- Algebraic::diff

Bibliography

- Experimenting with the Curved Kernel. Athanasios Kakargias, Sylvain Pion. Technical Report ECG-TR-302206-02, INRIA Sophia-Antipolis, 2003.
- Comparison of fourth-degree algebraic numbers and applications to geometric predicates.
 I.Z. Emiris and E.P. Tsigaridas.
 Technical Report ECG-TR-302206-03, INRIA Sophia-Antipolis, 2003.
- Towards an Open Curved Kernel.
 Ioannis Z. Emiris, Athanasios Kakargias, Sylvain Pion, Monique Teillaud, Elias
 P. Tsigaridas
 ACM Symposium of Computational Geometry 2004 to appear

The End

