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ABSTRACT

Resultants are defined in the sparse (or toric) context in or-
der to exploit the structure of the polynomials as expressed
by their Newton polytopes. Since determinantal formulae
are not always possible, the most efficient general method
for computing resultants is as the ratio of two determinants.
This is made possible by Macaulay’s seminal result [15] in
the dense homogeneous case, extended by D’Andrea [6] to
the sparse case. However, the latter requires a lifting of
the Newton polytopes, defined recursively on the dimen-
sion. Our main contribution is a single lifting function of
the Newton polytopes, which avoids recursion, and yields
a simpler algorithm for computing Macaulay-type formulae
of sparse resultants, in the case of generalized unmixed sys-
tems, where all Newton polytopes are scaled copies of each
other. In the mixed subdivision used to construct the ma-
trices, our algorithm defines significantly fewer cells than
D’Andrea’s, and is easier to implement and analyze, though
the matrices are same in both cases. Our approach prov-
ably extends to mixed systems of up to 4 polynomials, and
those whose Newton polytopes have a sufficiently different
face structure, but it should be generalizable to any mixed
system. Our Maple implementation is applied to study a
full example.
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1. INTRODUCTION

Resultants are fundamental constructions for studying and
solving algebraic systems; for instance, they reduce system
solving to linear algebra or to factoring univariate polyno-
mials. The sparse (or toric) resultant captures the structure
of the polynomials by combinatorial means and constitutes
the cornerstone of sparse elimination theory [3, 13].

The resultant is defined for a system of n+ 1 polynomials
in n variables over coefficient ring K. It is the unique, up
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to sign, integer polynomial over K which vanishes precisely
when the system has a common root. The classical, or pro-
jective, resultant expresses solvability of a system of dense
polynomials f; € K[x1,...,2»] in P™ over the algebraic clo-
sure K. The sparse, or toric, resultant expresses solvability
of a system of Laurent polynomials f; € KlzF?!, ... zf?]
over a toric variety X, defined by the supports of f;, s.t.
(K™)™ is a dense subset of X.

A resultant is most efficiently expressed by a resultant
matriz: this is generically nonsingular, its determinant is a
multiple of the resultant, and the determinant’s degree wrt
the coefficients of one polynomial equals that of the resul-
tant. For n = 1 there are resultant matrices, named after
Sylvester and Bézout, whose determinant equals the resul-
tant. Unfortunately, such determinantal formulae do not
generally exist for n > 1, except for specific cases, e.g. [7, 9,
10, 14]. Macaulay’s seminal result [15] expresses the extra-
neous factor as a minor of the resultant matrix, for classical
resultants of dense homogeneous systems, thus yielding the
most efficient general method for computing such resultants.

Resultant matrices for the sparse resultant were first con-
structed in [1]. The construction relies on a lifting of the
given polynomial supports, which defines a mixed subdi-
vision of their Minkowski sum into mixed and non-mixed
cells, then applies a perturbation d so as to define the in-
teger points that index the matrix. The algorithm was ex-
tended in [2, 4, 17]. In the case of dense systems, the matrix
coincides with Macaulay’s numerator matrix.

Extending the Macaulay formula to sparse resultants had
been conjectured in [2, 3, 11, 13, 17]; it was a major open
problem in elimination theory. We cite [17, p.219], where
P, s is the extraneous factor, and w denotes the lifting: “It
is an important open problem to find a more explicit formula
for P, s in the general sparse case. [ ...] This problem is
closely related to the following empirical observation. For
suitable choice of § and w, the matriz Ms,., seems to have
a block structure which allows to extract the resultant from
a proper submatriz. ”

D’Andrea’s fundamental result [6] answers the conjecture
by a recursive definition of a Macaulay-type formula, cf
sec. 3. But this approach does not offer a global lifting,
in order to address the stronger original conj. 1. Let M
be the resultant matrix, also known as Newton matrix, and
M™™ its submatrix indexed by points in non-mixed cells
of the mixed subdivision.

CONJECTURE 1. [11, Conj.8.1.19] [2, Conj.13.1] There
exist perturbation vector & and n + 1 lifting functions for
which the determinant of matriz M™™ divides ezactly the



determinant of Newton matrix M and, hence, the sparse re-
sultant of the given polynomial system is det M/ det MO™)

Our main contribution is to give an affirmative answer to
this stronger conjecture by presenting a single lifting which
constructs Macaulay-type formulae for generalized unmixed
systems, i.e. when all Newton polytopes are scaled copies of
each other. We state our main result, to be proven in sec. 4:

THEOREM 2. The global lifting of sec. 2 produces a Ma-
caulay-type formula for the sparse resultant of a system of
polynomials with scaled Newton polytopes.

Our algorithm is generalized, in sec. 5, to certain mixed
systems: those with n < 3, and reduced systems, defined
in [18] to possess sufficiently different Newton polytopes.
Most of these cases have been studied: reduced systems were
settled in [5], and bivariate systems (n = 2) in [8], by directly
establishing the extraneous factor. Our approach should
eventually make the single-lifting algorithm applicable to
the fully general case.

Using a unique lifting function essentially means that we
consider a deformed system, defined by adding a new vari-
able t so that each input monomial z* gets multiplied by t°,
where b € Z is the lifting value of @ € Z™. Such deforma-
tions capture the system’s behavior at toric infinity, hence
lie at the heart of most theorems in sparse elimination (e.g.
sparse homotopies, sparse resultants, the sparse Nullstellen-
satz). Such combinatorial methods consitute one of the two
main approaches for studying sparse resultants, e.g. [2, 3,
7, 16, 17], the other relying on Koszul complexes and their
generalizations, e.g. [9, 10, 14].

D’Andrea’s [6] recursive construction requires one to asso-
ciate integer points with cells of every dimension from n to 1.
Our algorithm constructs the resultant matrix directly, with-
out recursion, by examining only n-dimensional cells. These
are more numerous than the n-dimensional cells in [6] but
our algorithm defines significantly fewer cells totally, and
is overall simpler, which is important for implementing and
analyzing the algorithm. The disadvantage of our method
is to consider extra points besides the input supports.

Existing public-domain Maple implementations cover only
the original Canny-Emiris construction [2], either standalone
or as part of library Multires?. We have implemented this
paper’s algorithm in Maple; it is available upon request by
the authors.

The rest of the paper is structured as follows. The next
section introduces some necessary notions, and defines the
single lifting that produces Macaulay-type formulae. Sec.
3 recalls the recursive algorithm of [6], and sec. 4 proves
the equivalence of the two constructions. Sec. 5 sketches the
extension of our algorithm to mixed systems. Sec. 6 analyzes
the complexity of both algorithms. The appendix offers a
full example computed by our implementation.

2. SINGLE LIFTING CONSTRUCTION

For any polytopes or point sets A, B, let (A) denote the
affine span (or hull) of A over R and (A, B) the affine span
of AU B over R.

Let the polynomials’ supports be Aog,..., A, C Z" with
Newton polytopes

Q07 - '7Qn C Rn7 QZ = CH(A’L)7

Thttp://www.di.uoa.gr/~emiris/soft_alg.html
Zhttp:/ /www-sop.inria.fr/galaad /logiciels/multires.html
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where CH(+) denotes convex hull. As matrix construction al-
gorithms typically do, we define a regular and fine (or tight)
mixed subdivision of the Minkowski sum >_7_ Qs; cf [3, 13].
Regularity implies the subdivision is in bijective correspon-
dence with the face structure of the upper (or lower) hull
of the Minkowski sum of Qo, ..., Qn after they are lifted to
R, Each cell in R” is written uniquely as the Minkowski
sum of faces F; of the ;. A fine subdivision is characterized
by an equality between cell dimension and the sum of the
faces’ dimensions. We focus on cells of maximal dimension
n, and call them maximal or, simply, cells. We distinguish
them as mixed and non-mixed: the former are the Mink-
owski sum of n edges and a vertex. Mixed cells are i-mixed
if this vertex lies in A;. The type of a cell is either i-mixed
or non-mixed.

The Minkowski sum .7 Q; is perturbed by a sufficiently
small and in sufficiently generic position vector § € Q™. Let
Z be the integer lattice generated by Y, A;. The lattice
points in &€ = Z N (3.1, Q: + 0) are associated to a unique
maximal cell of the subdivision, and this allows us to con-
struct a resultant matrix M whose rows and columns are
indexed by these points.

Definition 1. Let p € € liein a cell Fo + --- + F,, + § of
the perturbed mixed subdivision, where F; is a face of Q;.
The row content (RC) of p is (i,7), if i € {0,...,n} is the
largest integer such that F; equals a vertex a;; € A;.

The main idea of both our and D’Andrea’s algorithms is
that one point, say bo1 € Qo, is lifted significantly higher.
Then, the 0-th summand of all maximal cells is either bgy
or a face not containing it. In D’Andrea’s case, facets not
containing bo correspond to different subsystems where the
algorithm recurses (each time on the integer lattice specified
by that subsystem). In designing a unique lifting, the issue
is that points appearing in two of these subsystems may be
lifted differently in different recursions. To overcome this,
we introduce several points ¢;;, for different I, very close (wrt
Z) to every b;j, which is lifted very high at recursion ¢ by
D’Andrea’s algorithm. This captures the different roles b;;
may assume.

Algorithm B. Our algorithm uses £ to index the rows
(and columns) of the numerator matrix of our Macaulay-
type formula. In particular, polynomial 2P~ % f; fills in the
row indexed by the lattice point p in def. 1. We now focus
on generalized unmixed systems, where

Qi = ]ﬁQ C Rn7

for some n-dimensional lattice polytope @ and k; € N*, 7 =
0,...,n. Then, the denominator shall be indexed by points
lying in non-mixed cells.

Definition 2. For i =0,...,n— 1, and any (n — 4)-dimen-
sional face k;Fj; C @i, where j ranges over all such faces,
let 6;; € Q™ denote a perturbation vector s.t.:

(1) it lies in the relative interior of k; F;;,

(2) it is sufficiently small compared to lattice Z, and ||d;;] <
|6, where || - || is Euclidean norm,

(3) it is sufficiently generic to avoid all edges in the mixed
subdivision of >°7 | Q.

Let b;j, for some valid j > 1, be vertex of Q);. We shall
use the perturbation vectors of def. 2 to define additional
points not contained in the input supports.



Definition 3. Alg. B defines points ¢;; € Q; N Q™. First,
co1 :=bo1 +d01. For i = 0,...,n—2 and any Fj; as in def. 2,
choose facets F(;11)n C Fij s.t.:

(1) kiF(;41)n does not contain b;;, and

(2) ki+1F(i11)n does not contain any of the already defined
C(¢+1)Z’S-

For each such facet set: c(;+1)n = bii+1)n + d(i+1)h-

The previous definition implies a many-to-one mapping
from the set of ¢;;’s to that of b;;’s: It reduces to a bijec-
tion when restricted to a fixed face Fj; C @Q; containing
bij. Condition 1 of def. 2 implies that c;; does not lie on a
face of dimension < n — ¢ and lies in the interior of (n — i)-
dimensional Fj. We can reduce the number of the ¢;;’s in
alg. B, but this would complicate the subsequent proofs.

For an application of def. 3 when n = 2, see fig. 1la, where
we define points ¢;; also on edges.

Definition 4. Let ho > h1 > ... > hp—1 > 1. Alg. B
uses sufficiently random linear functions H;,i = 0, ..., n, s.t.

1> Hi(aij) >0, and H; > H, i < t,

where a;; € A; and 4,t = 0,...,n, j =1,...,]|A;]. Alg. B
defines global lifting 3 as follows:

(1) Cij — h?ii, Cij € ]ﬁFz] C Qi7 = 074 ..,n — 1; this is
called primary lifting.

(2) Qij — Hi(aij)7 a;j € Ai, 1 =0,...,n.

Let F? denote face F lifted under 3. Now cfﬁ for all valid
7, is much higher, resp. lower, than any ciﬁﬁi > t, resp. i < t.
The B-induced subdivision contains edges with one or two

vertices among the c;j, and edges from the Q;. The vertex
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set of the upper hull of QZB contains some or all of the c;;

and the lifted vertices of Q;.

When all @Q; are simplices, as in the classical dense case, it
suffices to apply a primary lifting to one point per ;. Thus
our scheme generalizes the approach by Macaulay [15].

The resultant matrix constructed by alg. B is indexed by
all lattice points in £. To decide the content of each row,
every point is associated to a unique (maximal) cell of the
mixed subdivision according to def. 1. The t-mixed cells
contain lattice points as follows:

pEkoEo+- -+ k1B 1 +cy kB + -+ kR EnNZ

for edges F; C @ spanning R™. This gives optimal writing
p=po+---+pi—1+(bij+6t;) +pit1+---+pn, pi € AiNE;.

Hence, the row indexed by p, as with matrix constructions
in [2, 6], contains a multiple of fi(z):

xPO+"'+Pt—1+Pt+1+"'+Pn ft (:E),

and the diagonal element is the coefficient of bs; in fi(x).
Similarly, for the rows corresponding to lattice points in non-
mixed cells.

3. RECURSIVE CONSTRUCTION

We discuss D’Andrea’s recursive construction of a Macau-
lay-type formula [6]. There are certain free parameters in
the algorithm which we specify so as to obtain a version
very similar to our approach.

At the input of the 0-step the algorithm may use an ad-
ditional polytope m@, for any m € R, which we omit.We
describe the t-th recursive step, for t =0,1,...,n — 1.

Algorithm A. The input are polytopes
PY, . L PY e PY kPP C R L€ [0, ki]NQ,

the integer lattice L* spanned by S AN k:P®Y | and
perturbation vector §; € Q"t. Here, k; P, i > ¢, is an
(n —t)-dimensional face of k;Q, thus PO = Q. Also, P® is
a facet of P(tfl), and liPm7 i < t, is homothetic to k: PO,
These constructions shall be defined at the Recursion Phase.
Also, L® = Z and 0o = 9.

Construction Phase: Vertex by; € k;PY) N Ay, is lifted
to 1. We require that b;; = c¢¢; —d¢5. All other vertices of all
input polytopes are lifted to 0. This is the primary lifting
which partitions the Minkowski sum of the input polytopes
into a primary cell

P44l 1 PO byt ke 1 PO+ b PY 46, (1)

of dimension n — ¢, and several secondary cells. Each sec-
ondary cell is defined by an inner normal v € Q™™ to a facet
of kth not containing by;.

Polytopes Z:;é POk POk, PY are lifted by
applying the restriction of 8 on them. We consider [ fixed
throughout the algorithm. The upper hull of the Minkowski
sum of the lifted polytopes induces a mixed subdivision of
Ef;é P® 4 kt_HP(t) 4ot k:nP(t)7 which is then perturbed
by d:. The lattice points p of L™ contained in the perturbed
subdivision, are assigned RC by def. 1. This also assigns RC
to points p+b:; contained in the intersection of (1) with L.
Let us take care of the c¢;;. If point p lies in

(F+Fis14 -+ Fa+6)nLY, (2)

where F; C kiQi, i > t, F C >.'Z0 1;P"), having RC(p) =
(h,j), where Fj, = cp; = bn; + Onj, then the corresponding
matrix row is filled in by P~ f;,.

Face F ' C Y°'2) P® in (2), can be analyzed as F = loFy+
<o+ li—1Fi—1, where F; C P® for i < t. Moreover, every
cell in (1) is the Minkowski sum of b;; and the cell in (2).

Mixed cells of type 0 are defined here as in sec. 2. A
t-mixed cell wrt alg. A, for ¢ > 0, shall have n — ¢ lin-
ear summands from polytopes ki1 P, ... ko P® and a
0-dimensional summand from polytope Zi;é 1;PM. This
summand can be analyzed as lopo + - -+ + li—1pt—1, where
pi € P(t)7 for ¢ = 0,...,t — 1 and I;p; stands for a scalar
multiple of p;, seen as a vector. This leads to:

LEMMA 3. The mazimal cells at step t of alg. A are, for
some j and l; € [0, ki], of the form:

loFo+- -+ li—1Fi1+bij+ ki1 B+ + knFrn+ 6, (3)

where Fj is the projection of a face of the upper hull of P®
lifted by B, dim((Fo,..., Fi—1, Fiy1,Fn)) = n —t. Specifi-
cally, the t-mized cells in alg. A are:

lopo+- - +li—1pi—1+ b+ ki1 Eepr + - -+ knEn + ¢, (4)

where Eya,...,E,, are projections of edges on the upper
hull of PWY lifted by 8, dim((Eiy1,...,E,)) = n —t, and
points p; € PV, fori=0,...,t—1.

Recursion Phase: When ¢ = n — 1, the algorithm ter-
minates, since it has reached the Sylvester case. Otherwise,
it recurses: let P4+ be the facet of P® supported by v.



The (perturbed) secondary cell corresponding to v is

Fo =P 4o 1, PYFY 4 CH(byy, ke POHY)
+k)t+1P(t+1) + -+ knP(t+1) + 6.

Its associated diameter is

dy =bsj - v — min {p-v} € N,

peCH(by; ke F)

where - stands for inner product. We define two sublattices
of LW LE:) is spanned by Z?:Hl A; Nk PO and Lq(f)
is the sublattice orthogonal to v. They have the same di-
mension, so we define the (finite) index ind, = [L{ : Lif)],
equal to the quotient of the volumes of their base cells. Let
q range over the ind, coset representatives for LE:) in Ll(f)A

Let I € [0,k¢] take d, distinct values corresponding to
different values of p - v for all p € (CH(bs;, k: P*+) +6,) N
L® . Note that ltP(tH) is homothetic to ktP(tH). Let
5, € Q™! be a translation vector such that {,P¢+tD + 4!
contains at least one point in (CH(b;, ke POTY) +6,) N LY.

In particular, I, P4tV + 51 equals ke PUHY iff [, = k¢, and
vertex by; iff Iy = 0, otherwise it equals (CH(bej, ke P4V +
0:)NH, where H is a hyperplane parallel to a supporting hy-
perplane of k; P*+V):cf [6, lem.3.3]. By abuse of notation, in
the rest of this paper we shall denote H, and the supporting
hyperplanes of faces k;P**V) and bs; of the previous convex
hull, as (I; P¢+D),

Points in (Fy + d¢) N L® are partitioned into d, subsets
(one per value of [;), called slices, of the form

lop(i+1) 4+ o4 lt_lp(t“) + (ltP(t+1) + (5,/5)
ke PYTY 4 b, PUTD 46, 0L,

(6)

which can be rearranged as

P o PO gy PUFD .
+knp(t+1) 465N L(’f)7 ( )

where §, = &; + ;. Moreover, J, can be decomposed as
0% + dxv, where 85 € Qu and §y, € LEP ® Q. Now, every
point in (7) corresponds to a point in

0P o 4 1, POTY gy PO
+E, PYY 465, 0 (g+ L),
for some coset representative q. Set d;41 := dap—q, LT =

L$)7 and observe that point p belongs in (7) iff point
pli=p—30—q (8)

belongs in

P o, PUTY kg POTD
ke PUTY 4 5 0 LU,

9)

We call this set a piece; d¢41 carries the information to de-
fine the piece from the input polytopes and LY. The
algorithm recurses on each of the ind, such pieces. The set

LPY P gy POTY ke, PY g,
over LY is exactly like the original input, only one di-
mension lower. This completes the algorithm.

Remark 1. Since every point p’ in a piece corresponds bi-
jectively to a point p in a slice via the monomial bijection
(8), we shall often consider a piece as a subset of a slice and
omit the translation.

At the end of the recursion, RC is defined on €. Alg. A
defines a partition of £ in the form of a collection of mixed
subdivisions of primary cells (of decreasing dimension). The
1-summands from Q); in the cells are defined by any point in
A; or among the c¢;;, for all valid j, and may be multiplied
by a rational number in (0, k;].

4. EQUIVALENCE OF CONSTRUCTIONS

The single-lifting algorithm is alg. B; its overall effect is
very similar to that of alg. A, since they both use 8. The
former partitions £ into sets of points in n-dimensional cells
and assigns RC, whereas, as we show in the next lemmas,
alg. A partitions £ into subsets which, at step t, lie on the
intersection of a (n — t)-dimensional hyperplane with an n-
dimensional cell of 3. Note that the intersection itself, as
a subset of R™™* does not coincide with the cell of alg. A.
However, their set difference is of infinitesimal volume. Al-
though both algorithms use 3 to subdivide their input poly-
topes, they do so in a different fashion; alg. B applies 3 to
every @;, whereas alg. A does so recursively to a different
set of polytopes at every step.

In the rest of the paper, for simplicity, we shall omit the
translation vectors d:. Moreover, unless otherwise stated,
we shall treat every slice and piece as a polytope and not as
the set of points in the intersection of this polytope with an
appropriate lattice. In particular, we shall be interested only
on the form a slice\piece as a Minkowski sum of polytopes.
The existence of a translation vector, so as this polytope
contains integer points in the lattice under consideration,
shall be implied.

We now establish the correspondence between the two al-
gorithms for ¢ = 0, then generalize to arbitrary t. At step 0
of alg. A, bo: is lifted to 1 while every other vertex of all
input polytopes to 0; this creates primary cell

pr.celléA) =bo1 + k1Q + - + knQ,
and several secondary cells of the form
sec.cell§™ := CH(bor, koPY) + ks PV + -+ 4 k, P,

each corresponding to a facet P of Q@ not containing bo; .
In alg. B, co1 plays the role of bp1 and this leads to a group
of cells covering the corresponding primary cell

pr.celléB) =co1 +k1Q+ -+ knQ,
and several groups of cells, each group covering
seocell(()B) := CH(co1, koP(l)) Ll PM 4 knP(l)7

which is a typical n-dimensional secondary cell wrt alg. B.

Remark 2. All cells within prlcell(()A) and pr.cell(()B) differ
only at their first summand; the former are of the form bo1 +
Fy, + --- + F,, whereas the latter are co1 + F1 + -+ + Fp,
where F; is a face of Q;, since 3 is used by both algorithms
to subdivide Q1 + - - + Qn, and co1 = bo1 + do1.

LEMMA 4. prlcell(()A) neé= pr.cell(()B) N &, and points in
this set are assigned the same RC under both algorithms.



ProoF. Recall that o = ¢ and consider the subdivision
of 37 Qi induced by B and compare pr.cell(()A) + 6 and
co1+Qi+ - +Qn+d=0bor+d1+Q1+-+Qn+6. These
polytopes differ by do1, which is very small. Moreover, by
the choice of §, the boundary of pr.celléA) +0 has no points in
Z. Since, by def. 2, ||6]| > [|d01]|, the two polytopes contain
the same Z-points. This settles the first claim.

The second claim follows from rem. 2 and the fact that the
two subdivisions may only differ in cells having vertex bo1
instead of co1. Since co1 — bo1 = do1 is very small compared
to Z, even these cells contain the same Z-points. [

Each seclcellgA) is divided by alg. A into slices loP™ +
PO 4.4 knP(l)7 one for each value of lo € [0, ko].
Fach slice is partitioned into pieces on which alg. A recurses
producing (n — 1)-dimensional primary cell

prcell™ = 1oPY 4 by; + kPO 4 4k, PY,(10)
and secondary cells

sec.celll™ := 1oPP +CH (by;, ki P®)+ka PP+ 4k, PP
(11)
Every piece of a given slice lies on lattice L™ and can be
thought of as the intersection of a translation of that slice,
regarded as a polytope, with LM Recall that, by rem. 1,
we shall consider a piece as subset of a slice.
Similarly to alg. A, we can partition the corresponding
sec.cell(()B) into slices:

0PY 4+ b PO 4k, PO

by intersecting CH(co1, koP(l)) with a hyperplane parallel to
(a supporting hyperplane of) koP™. Recall that we denote
this hyperplane as (lf)P(l))

Remark 3. Observe that each slice of sec.celléB) (resp.
sec.cell(()A)) parameterized by Ij (resp. lo), is homothetic to
a facet of this secondary cell, supported by (kéP(1)> (resp.
(koP™M)).
mothecy only on the first summand ko P of this facet.

Moreover, this homothecy is defined by a ho-

Hyperplanes (IpP™V) and (IoP™V) are identical; they differ
only on the homothecy on koP™ expressed by I, and Io
respectively. Obviously, I ~ lop because co1 =~ bo1. Note
that we omit the translation vector so that the slice lies
in seclcellgB). Thus, corresponding slices contain the same
points in the lattice LO = 7. This, moreover, leads to the
following extension of lem. 4.

LEMMA 5. Every mazximal cell of the subdivision induced
by B on prlcellgA) corresponds to the intersection of hyper-
plane (I,PY)Y, for some ly, with a unique mazimal cell in
sec.cell(()B), of the same type. The cells contain the same
points in LY | with the same image under RC.

PROOF. Any maximal cell in pr.cellgA) has the form lgFo+
bij+kaFo+- - -+knFy, where faces F; C PM i=0,2,...,n,
have dimensions adding up to n— 1. Recall pr.cellgA) lies on
a slice of sec.cell(()A) parameterized by the value of [y hence,
when ( is employed, it gives rise to the same subdivision in
every such primary cell. By construction, subspace (bo1, Fo)
is orthogonal and complementary to (P™M).

In ki PY| point c1; is lifted sufficiently higher than any
other, so there exist maximal cells in sec.cell(()B) that has
it as summand. The other summands are induced by 3 on
CH(co1, k:OP(l))7 kgP(l)7 ey k, P . These n-dimensional cells
of alg. B correspond (when intersected with (IjP™M)) to
(n — 1)-dimensional cells in prlcellgA)A It is straightforward
to show that, for Ij € [0, ko] and any S-induced cell in this
Minkowski sum, its intersection with (IjP™V) is a S-induced
cell in )PV + ke PM 4 ... 4k, PO

There exists I, ~ lo that establishes the lemma, because 3
is applied to (n — 1)-dimensional Minkowski sums which are
almost identical, and the effect of b1; and ci; is the same
in what concerns the lattice points in corresponding cells,
following the proof of lem. 4. [

In each seocellgB) we distinguish 2 types of cells: cells in

pr.cell® := CH(cor, koP™) + c1; + ka PP + -+ 4+ k, PY,
(12)
which, by lem. 5, contains exactly the integer points in all

primary cells of alg. A of the form (10) (for each slice/coset),
and for each facet P of PM | cells in

sec.cell® := CH(co1, koP'®) + CH(cy;, k1 P?)

(13)
+k2 PP 4k, PP,

Note that both pr.cellgB) and sec.cellgB) are n-dimensional,
whereas pr.cell%A) and seclcellgA) are (n — 1)-dimensional.

Remark 4. Every maximal cell in seocellgB) must have
summands Fy = CH(co1,Go), F1 = CH(c15,G1), for some
Go C koP® and Gy C k1 P®@.

A similar argument as in lem. 5, implies that (13) contains
exactly the integer points in the union of all secondary cells
(11) defined over the various values of Iy € [0, ko], for a given
j. The recursion steps of alg. A, for ¢ > 2 are defined over
a chain of facets P? > P® 5 ... 5 P~V Hence, every

pr.celliA), for t > 1, contains integer points in sec.cellgB) N
Z. Therefore, we generalize the correspondence between the

two algorithms by focusing on sec.cellgB)A

LEMMA 6. (Main) Every mazimal cell of the subdivision
induced by B on pr.cellgA), for t > 2, corresponds to the
intersection of hyperplane (li_lP(t)), for somel;_, =~ 11 €
[0, ke—1]NQ, with a unique mazimal cell in sec.cell™ | of the
same type. The cells contain the same points in lattice LW
with the same image under RC.

PROOF. Primary cells of step ¢ lie on (n — t)-dimensional

slices of the (n—¢+1)-dimensional sec.cellgf)l, parameterized
by the value of l;—1 € [0, kt—1]:

PY 4+ 41, PY 4k PY 4k, PO (14)
Similarly to rem. 3, let lo,...,lt—1, l; € [0,k;] N Q, define
the homothecies on the first ¢ summands of (14) and the cor-
responding hyperplanes (lop(t)>, RN <lt_1P(t)>4 Note, that
prlcelliA) is a subset of (14) and is subdivided by § into
maximal cells of the form (3).

Intersecting sec.cellgB) with the above hyperplanes, yields
a (n — t)-dimensional subset:

WP+ 4 [ PY 4k PY o 4k, PY (15)



This subset can also be obtained by directly intersecting
sec.cellgB) with (I,_1 PM). Now, I} ~ I;, fori = 0,1,...,t—1
because ¢;j & b;;. Fori =0,...,t—1, each [; defines a hyper-
plane (I;P")) identical to (I;P®), except on the homothecy
on the i-th summand. Hence, (15) is very similar to (14) in
the sense that they contain the same integer points in L
and their volumes differ infinitesimally.

By def. 3 there exist n-dimensional cells in sec.cellgB)
which have c;; as a summand. The intersection of each
of these cells with (15) shall also have ¢;; as a summand,
because this is the only point lifted highest in P® . These
cells correspond to the primary cell wrt alg. A of the slice
(14). Moreover, this intersection is a S-induced cell in (15):

oFo+ -+ 11 Fo1 +cj+ kg1 Fopr + -+ ko F,y (16)

which contains the same integer points as (3). Since f is
applied on (n — t)-dimensional polytopes which are almost
identical, both (3) and (16) are of the same type. [

COROLLARY 7. Using the notation of lem. 3, in particular
for t-mized cells of alg. A in the form of (4) and t,j, a t-
mized cell of alg. B is of the form:

koEo+--+ki—1Ei1+cij+kip1 B+ +kanEn+6: NL,
where E; is the projection of an edge of Q°,

(a) (Eo,...,E:—1) is a t-dimensional space complemen-
tary to (P(t)), and for i <t, kiE; = (cij, kip:), where
pi € P9 in lem. 3, and

(b) edges Eiy1,...,En are the same as in lem. 3,(4).

ProOF. For t = 0, the corollary follows from rem. 2.

All 1-mixed cells wrt alg. B lie in (12), since every max-
imal cell in it has c;; as a summand. By lem. 5, edges
koEs, ..., knEy, span the (n — 1)-dimensional space (P(l)).
Hence, edge koEo has to be of the form (co1,kopo), where
po € PV by lem. 5, is as in lem. 3,(4).

Similarly, lem. 6 implies that for ¢ > 1, the last (n —
t) edges of any t-mixed cell wrt alg. B span the (n — t)-
dimensional space (P®")), because 3 induces the same sub-
division on the last n — ¢ summands of (14) and (15). For
the cell to be maximal, (koFEo,...,k:—1E:—1) must be a t-
dimensional space complementary to (P(t)>. By construc-
tion (see proof of lem. 6), each k; E;, for ¢ < t, is an edge in
CH(cij, ki P®) of the form (cij, kip:), where p; € P is as
in lem. 3,(4). O

Wen now consider non-mixed cells, by extending cor. 7:

COROLLARY 8. Consider any non-mized cell of alg. A,
which has the form of (3) in lem. 3. It corresponds to cell:

CH(co1,koFo) + - - + CH(cp—1y;, ki—1Fi—1) + ¢t
Fkiy1Fip1+ -+ knFo,
which is a non-mized cell defined by B, where
(a) the Fy, ..., Fi_1 are projections of faces in Q°, fori <

t, and <Cf](0017 k0F0)7 ey OH(C(t_l)j7 kt_1Ft_1)> s a
t-dimensional space complementary to (Fit1,. .., Fn),

(b) Fo,...,Fi_1,Fiq1,...,Fn are the same in both cells.

We have shown that each row of the constructed matrices,
indexed by points of £ lying in a mixed or non-mixed cell, is
identical for both algorithms, where £ is the same pointset
for both algorithms.

THEOREM 9. The Macaulay-type formula for the sparse
resultant of generalized unmixed systems, constructed by the
global lifting of sec. 2, and that constructed by D’Andrea’s
approach [6] are identical.

As a consequence of thm. 9 and [6, thm. 3.8], follows thm. 2.

5. TOWARDSMIXED SYSTEMS

In studying systems with different Newton polytopes, we
need the following:

Definition 5. The set of polytopes Q1,...,Qn C R", s.t.
dim({Q1,...,Qn)) = h — 1, is essential if every subset of
cardinality j,1 < j < h spans a space of dimension > j.

The sparse resultant is well defined only for essential sets
of Newton polytopes. An essential set defines a Minkowski
sum of dimension A — 1 but the converse is not always true.

Alg. A admits one main modification in the mixed case:
At the Recursion Phase, the faces F; C @Q; supported by
vector v are not always the same. Let us describe the 0-th
iteration for simplicity. We assume there is no additional
polytope. Consider the n-dimensional secondary cell:

CH(bo1, Fo) + FA + -+ F, CR",

where F; € R"™'. Wlog, let {Fi,...,F:} be an essential
subset and let L (k) be the integer lattice it defines. The
algorithm recurses on lattice L4 (k) and polytope set (rep-
resenting a piece)

CH(bm,Fo) ﬂA+(k)7F174 ., Py,
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FriiNAL(k), ..., FnnAL(K), (1n

where A (k) ranges over all possible homothetic copies of
Ly (k) defined by the different cosets of L4 (k) in its satu-
ration, and the different slices that can be defined as inter-
sections with CH(bo1, Fo). Alg. A distinguishes two cases,
according to whether there is one or more essential subsets
of {Fi,...,F,}. In the former case, v and the correspond-
ing secondary cell are called admissible. For non-admissible
cells, all integer points are considered as non-mixed, i.e.
treated as if they lied in non-mixed cells. For admissible
cells, integer dr, is defined [6, sec.4] (cf [16]), and dF, pieces
of the form (17) are (arbitrarily) selected. Lattice points la-
beled as mixed in these pieces by the recursive application of
alg. A are labeled as mixed overall, the rest are non-mixed.

Reduced systems are such that, for any vector v € R",
there is some ¢ € {1,...,n} so that the face supported by v
in @; is a vertex. For us, it suffices that this holds for fewer
v [5]. For such systems, as well as for arbitrary systems
of 3 bivariate polynomials (n = 2), any sufficiently generic
global lifting that lifts one vertex bo1 € Qo sufficiently high,
thus 8 too, produces a Macaulay-type formula. The proof
is subsumed by that for n = 3 below; cf also [5, 8].

Alg. B is modified so that def. 3 appliesup toi = n—1. We
sketch a proof that it produces the same matrix as alg. A, by
extending the correlation between maximal cells, established
in the unmixed case. Our proof could be extended to n >
3, but seems complicated; we expect that a more elegant
approach is possible.



In non-admissible secondary cells of alg. A, for any n,
we show both algorithms behave the same way, namely the
corresponding lattice points lie in non-mixed cells of alg. B.
We demonstrate the contrapositive by focusing on a mixed
cell of alg. B and a corresponding secondary cell of alg. A,
following lem. 6.

LEMMA 10. Ewvery t-mized cell by alg. B, when intersected
with a (n — t)-dimensional hyperplane as in lem 6, is con-
tained in an admissible secondary cell of step t — 1 of alg. A.

PROOF. Any t-mixed cell of alg. Bis Eg + ---+ Fi—1 +
aij+ Eiy1 + -+ + En, where ay; is either a vertex of Q;
or some c¢¢; in the interior of an (n — t)-dimensional face,
and edges Ei41,...,E, span an (n — t)-dimensional space.
This cell is intersected by a (n — ¢)-dimensional hyperplane,
similarly to lem. 6. The intersection is contained in a ¢-
primary cell of alg. A with ¢-summand b;; it lies in a piece
of (t — 1)-secondary cell

Fo+---+F_o+ CH(b(t—l)}“Ft—l) + i+ + Fy,

where the F; are faces of the Q;, i = 1,...,n, supported by
the same vector, with dim F; < n—t. We claim {F,..., Fy}
contains a unique essential set, with cardinality r + 1, span-
ning an r-dimensional space, which is defined as follows: F;
and r < n —t faces, denoted wlog Fi+1,..., Fit,, where r is
minimal so that dim H = r, for H = (F%, ..., Fiqr).

By hypothesis, dim(Fy+1, ..., Fn) = n—t, since a subspace
is spanned by the E; and has same dimension. So subsets
indexed in {t +1,...,n} span a space of dimension at least
equal to their cardinality. In addition, none of the F;,i >
t+r is contained in H. So every subset indexed in {¢,...,n}
containing {t} U J, for J C {t +r + 1,...,n}, will be of
cardinality < r + |J| and span a space of dimension 7+ |J|.
Hence there are no other essential subsets. [

For n = 3, all admissible secondary cells have dr, pieces,
since there is no extra artificial polytope in the input of
alg. A. We distinguish cases on the dimension k — 1 of the
space generated by the essential set {F1,..., Fi}, 1 <k < 3,
on which the recursion of alg. A occurs:

(1) If kK — 1 is 0 or 1, the recursion is either trivial (occurs
on a vertex), or corresponds to the Sylvester case.
(2)Ifk—1=2and dim F; = 1,7 = 1,2, 3, the two algorithms
behave similarly, since def. 3 defines points cz; in the edges
of Q2 and the main lemma applies. Notice that dim Q2 > 1;
otherwise the Q);’s would not form an essential set.
B)Ifk—-—1=2 dimF;, € {1,2} for i = 1,2,3 and at
least one face is 2-dimensional. If dim Fi = 2, then lem. 6
applies. Otherwise, dim F} = 1 and dim F> > 1. Irrespective
of dim Fb, the cz; play the role of distinguished points and
lem. 6 applies again.

6. COMPLEXITY

We analyze the worst-case asymptotic bit complexity of
our algorithm and D’Andrea’s, when they construct resul-
tant matrices in sparse representation. We believe these
bounds are not optimal and further work may tighten them.

Alg. B, implemented by the direct approach of [2], com-
prises of two main steps. First, the computation of the ver-
tices of each @, is typically dominated. Second, we need
RC for all p € &, in order to construct the Macaulay-type
formula. Both steps can be reduced to linear programming
with C constraints in V' variables, and coefficient bitsize B.

If we use a poly-time algorithm such as Karmarkar’s, the
bit complexity is C*®V?B?, where B depends on the bit-
size of the input coordinates and of J, §;;. It is related to the
probability that the chosen perturbations are not sufficiently
generic; see [2] for the full analysis.

Let m be the maximum number of vertices of the @,
r the total number of c;;’s, and let O*(-) indicate that we
ignore polylog factors. The linear programs have complexity
O*(r*B?) = O*(m™B?) because r is bounded by the total
number O(m!™/?) of faces in Q. In an output sensitive
manner, 7 = O(|€|), because the addition of every c¢;; is
made in order to handle at least one distinct point in £.
Hence, the complexity of constructing the Macaulay-type
formula is O*(|€|m™B?), or O*(|€]*B?). These bounds hold
also for matrices in dense representation. For generalized
unmixed systems, one can use || = O(k"e"D) from [2,
thm.3.10], where k = max;{k;}, D is the total degree of the
sparse resultant as a polynomial in the input coefficients,
and e the basis of natural logarithms.

A better implementation finds RC for one point in a max-
imal cell, then enumerates all points in this cell in time pro-
portional to their cardinality multiplied by a polynomial in
m,n, B [12, thm.16]. The neighbours of these points which
lie outside the cell will yield new cells, so as to explore the
entire Minkowski sum; detecting new cells does not increase
the overall complexity. If S < |£]| is the number of max-
imal cells containing at least one lattice point, alg. B has
complexity O*(Sm™B? + |£]), where typically, S < |€|.

For alg. A, complexity is dominated by O(|€|n) linear pro-
grams, since every p € £ may require O(n) of them for its
image under RC to be determined. Each linear program has
bit complexity O(n”*m?B?). This process essentially de-
cides in which slice of which secondary cell lies p. Although
this subdivision contains much more cells than alg. B, the
asymptotic analysis indicates that the latter may be slower.
The optimal implementation for constructing the Macaulay-
type formula should combine ideas from both algorithms.
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Appendix: Example

Let n = 2, Ag = A2 = {(170)7(071)7(072)7(172)7(370)}7 and
A1 = {(2,0),(0,2), (0,4),(2,4),(6,0)}, so the lattice generated
is Z2. ko = k2 = 1, k1 = 2. Now v1 = (—=1,0), v2 = (0, 1),
vz = (—1,—1). Let 6 = (—1/30,—1/30), (fig. 1a).

Alg. B: Let bp1 = (1,0) € Qo, b2 = (07 2), big := (2,4),
bis = (6,0) € Q1, do1 = (1/1000,1/1500), 12 = (0,1/2000),
14 = (—1/3000,0), d15 = (—1/2000,1/2000). Consider integer
points and their cells (fig. 1c):

point cell in secondary cell wrt va type
(1,7),(2,7) | (c01,(0,2)) +((0,4), c14) +(0,2) +6 | 2
(377) (6017(072)) +c1a + ((072)7(172)) +9 1

where the summands come from Qq, Q1, Q2 resp. The two cells
together with cell o = CH(co1, (0, 2), (1,2)) +c14 + (1,2) 4+ 9, and
some infinitesimal cells which do not contain any integer points,
belong to the secondary cell wrt to ve of alg. A, which contains
the same integer points. Points (1, 7), (2, 7), (3, 7) correspond (via
an appropriate translation) to points of a piece of the secondary
cell on which alg. A recurses. Cell o does not contain any integer
points because of the choice of d;5, .

Consider points corresponding to a piece of the secondary cell
wrt to vz, of alg. A, and their cells by :

point cell in secondary cell wrt vs type
(4,7),(5,6), | (co1,(1,2)) + (c15,c14) + (1,2) + 9 2
(6,5),(7,4)

(8:3),(9,2) (co1,(1,2)) +c15+((3,0),(1,2)) +0 [ 1
(10,1), (11,0) | CH(co1,(3,0), (1,2)) + c15 + (3,0) + 6 | non

Consider a piece of the secondary cell wrt to vy, of alg. A. Points
in it lie in the following cells of alg. B:

point cell in secondary cell wrt vy type
(0,4) (co1,(0,1)) +c12 +((0,1),(0,2)) + 0 1
(0,5) CH(co1, (0,1),(0,2)) + c12 +(0,2) +0 | non
(07 6)7 (07 7) (0017 (07 3)) + (0127 (07 4)) + (07 2) +0 2

Alg. A: bg; is lifted to 1, all other vertices of all polygons are
lifted to 0. This partitions Qo + Q1 + Q2 into a primary cell
bo1 + @1 + Q2 and 3 secondary cells corresponding to vi, v2, v3,
normals to the facets of Qo not containing bg;. The Q1,Q2 are
lifted using 3, which subdivides the primary cell (fig. 1b). This
subdivision “coincides” with the restriction in cg1 + Q1 + Q2 of
the subdivision by (3, except that the latter uses co; whereas the
former uses bp1, i.e. the integer points in both subdivisions are
the same and are assigned the same RC.

o We study the Recursion Phase on secondary cell:

fvl = CH(bOhkOFvl) +k1Fv1 +k2Fv17

defined by facet Fy, = ((0,1), (0,2)) C Q supported by v1.

Atv; = {(0,2),(0,4)}, A2, = {(0,1),(0,2)}, the lattice gen-
erated by A1y, + A2y, is Ly := ((0,3),(0,4)) = Ly, = Z. The
index of Ly in Ly, is indy; = 1 and the coset representative for
Ly in Ly, is go = (0,0). The vi-lattice diameter is d,, = 1.
Hence there is one slice corresponding to one piece.

‘We describe the recursion step on this piece. It contains points
corresponding to (0,4), (0,5), (0,6), (0,7) lying on the slice of
Fuy, + 0 of the form

(MkoFyy +06") 4+ k1Fyy + kaFy, + AFy, + 6.

To define the piece, following notation in [6], the scalar multiple of
Fy, is AFy, = %Fvl and the translation vector is §’ := (3—10,0).
Since we do not use an initial additional polytope, A = 0 and

Ao i=A+A=23,



Let 6y (= § +6' = (0,7%), and 8y = 6" + 65y, , where
5\ =(0,0) € Qvl and dy,, = (0, — 310) € Ly ® Q, hence dgy, :=
5>\v1 —qo = (0,— ) So, the slice of Fy, + 6 is

k1Fy, 4+ k2Fy; + Ay koFuy + 0y, (18)
and the corresponding piece in Ly is
k1Fy, + k2Fu, + Aoy ko Fu, + 60, - (19)
The bijection between points in (18) and (19) is
p=D+6" +q =D,

where p € (18) and p € (19). After re-indexing, the input of the
recursion step is:

- the polygons Qo = k1Fy,, Q1 := kaFy,, and Q2 1= 2 koFl,
which is the additional polytope,

- the lattice Ly := {(0,3), (0,4)) and

- the perturbation vector dg := 00w, = (0, —%).

In order to be compatible with 3, we choose bg1 = b12 = (0, 2)
and apply the primary lifting. This partitions @Jr@Jr@Jr%
into a prlmary bo1 + Q1 + Q2 + do and a secondary cell Qo +
0,2) + (0 2) 4 0. Lifting B induces a mixed subdivision on
the prlmary cell consisting of the cells bo1 + (0,1) + Q2 + 6o and
bo1 + Q1 +
point (0, 5), corresponding to the same point on the slice, which is
also non-mixed under alg. B. The latter cell is 0-mixed, hence 1-
mixed and contains point (0, 4), corresponding to the same point
on the slice, which is also 1-mixed under alg. B. The secondary cell
Qo+ (0,2)+ % (0,2) + 60 is T-mixed, hence 2-mixed and contains
the integer points (0, 6), (0,7) corresponding to the same points
on the slice. They are also 2-mixed under alg. B.

e We apply recursion on secondary cell:

%(07 1) 4+ 8o. The former is non-mixed and contains

Fuvy = CH(bo1, koFuy) + k1 Fvy + k2 Fuy,

defined by the facet Fp, = ((0,2),(1,2)) of Q supported by va.

Atvy, = {(0,4),(2,4)}, A2y, = {(0,2),(1,2)} and the lattice
generated by A1y, + A2y, is Ly = ((0,6),(1,6)) = Ly, = Z.
The index of Ly in Ly, is indy, = 1 and the coset representative
for Ly in Ly, is go = (0,0). The va-lattice diameter is dy, =
bo1 - v2 — minpeCH(bmkon)p -vg = 2. Hence, there are two
slices, each containing one piece, and the algorithm recurses on
each such piece.

We analyze the recursion step on the piece of the shifted sec-
ondary cell Fy, 46, which contains the integer points correspond-
ing to the points (1,7),(2,7),(3,7) lying on a slice of the shifted
secondary cell Fy, + 6 of the form

(AkoFoy +8') + k1 Fuoy + ka2 Fuy + AFyy + 6.

To define this piece we have that F,, is S\sz = %FUQ and the

translation vector ¢’ := (23,0) Now X = 0 and hence Ay, :=
A4+ A = %. Let 6y := §d + ¢ = (2—9,7%). Then, 8y can
be written as 6y = )2 + dxy,, where 6y = (0,1) € Quz and
Oruy = %,f—) € L+®Q, hence 0gvy := ryy —q0 = (%,7%).

So, the slice of Fy, + 9 is
k1Fuy + k2 Fyy + AugkoFug + 9, (20)
and the corresponding piece in L is
k1Fyy + k2 Fyy + Mg ko Fuy + 80v,y - (21)
The bijection between points in (20) and points in (21) is
p=p+62+q=p+(0,1),
where p € (20) and p € (21).
After re-indexing, the input of the recursion step is:

- the polygons Qg := k1Fu,, Q1 1= kaFy,, and Qz := 2 koFy,
which is the additional polytope,

- the lattice L4+ := ((0,6), (1,6)) and

- the perturbation vector 0 := dpu, = ( 9 31)

207 307"

To be compatible with 8, we choose bp1 = bia = (2,4) and
apply the primary lifting; this partitions the Minkowski sum Qo+
Q1+ Q2+ into a primary bo1 + Q1 + Q2+6 and a secondary cell
Qo +(0,2) + 5 3L 5(0,2) +¢ . Lifting 3 induces a mixed subdivision
of the prlmary cell consisting of the cells bo1 + (1,2) + Q2 + &
and bo1 + Q1 + %(07 2)+44§. The latter is O-mixed, hence 1-mixed
and contains the integer point (3,6) corresponding to point (3, 7)
on the slice which is also 1-mixed under alg. B. The former is
non-mixed and does not contain aniy integer points.

The secondary cell Qg+ (0, 2)+ 5(0,2)+6 is T-mixed, hence 2-
mixed and contains the integer pomts (1 6), (2,6) corresponding
to the points (1,7), (2,7) of the slice respectively; they are also
2-mixed under alg. B.

e The last secondary cell is

Fuvg = CH(bo1, Fuy) + k1Fyy + k2 Fys,

defined by the facet Fpy = ((3,0), (1,2)) of Q supported by vz =
(=1,-1).

Atrv; ={(6,0),(2,4)}, A2v, = {(3,0), (1,2)}, the lattice gener-
ated by A1y, + Aoy, is Ly = 0),(7,2)) = 2Z and Lo, 2 Z.
The index of Ly in Ly, is indy,; = 2 and the cosets representatives
for Ly in Ly, are ¢o = (0,0) and g1 = (—1,1). The vs-lattice
diameter is dyg := bo1 - v3 — minpecH(bo1kon3) p-vs = 2. Hence
there are two slices, each corresponding to two pieces, and the
algorithm recurses on each such piece.

We analyze the recursion step on the two pieces that con-
tain integer points corresponding to points (11,0),(10,1), (9, 2),
(8,3),(7,4), (6,5),(5,6), (4,7) lying on a slice of the shifted sec-
ondary cell Fy; + 6 of the form

(AkoFoy + 8') + k1 Foy + kaFuy + AFys + 0.

To define these pieces, we have that the scalar multiple of F,
is AFy, = %Fvg and the translation vector is §’ := (1757 0). Now,
A =0 and hence Ay, := A+ A = 60, Let §) :=6+46" = %,——)
Then, §, can be written as §y, = 5 + dxvy, Where 5 3 =

(1,1) € Qus and vy = —%,——) € Ly ® Q, hence 60U3 =
dxvg — qo = (= ? **) and S1ug 1= Oxuy — 1 = (33, - 50).
So, the slice of Fy,

levB +k2Fv3 +)\v3k0Fv3 +5>\, (22)
and the corresponding pieces in L are
leUS —+ kQF»US =+ AUS konB —+ 501)37 (23)

klpvg +k2Fv3 +>\v3kOFv3 +61v37 (24)

The correspondences between points in the slice and points in the
pieces are

p=p+06"+aq=p+(1,1),
where p € (22) and p € (23), and

p=P+6°+q =p+(0,2),

where p € (22) and p € (24).
After re-indexing, the input of the recursion step is:
- the polygons Qo := k1Fu;, Q1 := kaFyy, and Qg := 22koFl,
which is the additional polytope,
- the lattice Ly := ((9,0), (7,2)) and

- the perturbation vectors dg := dpvy = (—é—g,—g’)—é) and &1 :=
E) — (L _61
1vs = 60> 730/

As (8 indicates, we choose bg; = bis = (6,0) and apply the
primary lifting.

For the first piece, the lifting partitions the Minkowski sum
Qo + Q1 + Q2 + & into a prlmary bo1 + Q1 + Q2 + 6o and a
secondary cell Qo + (1,2) + ( 2) + 8o. Lifting 8 induces a

mixed subdivision on the prlmary cell consisting of the cells b1 +



(3,0) + Q2 + o and bo1 + Q1 + %(1, 2) + 80. The former is non-
mixed and contains point (9,0), which corresponds to (10,1) on
the slice which is also non-mixed under alg. B. The latter is O-
mixed, hence 1-mixed and contains the point (7, 2) corresponding
to the point (8, 3) in the slice which is also 1-mixed under alg. B.

The secondary cell Qo+ (1, 2)+ % (1,2)+3p is I-mixed, hence 2-
mixed and contains the integer points (3, 6), (5,4) corresponding
to the points (4, 7), (6,5) of the slice respectively which are also
2-mixed under alg. B.
__For the second piece, the lifting partitions the Minkowski sum
Qo + Q1 + Q2 4 01 into a primary bo1 + Q1 + Q2 + 61 and a
secondary cell Qo + (1,2) + %(1,2) + 41. Lifting 8 induces a
mixed subdivision on the pﬁnarg cell consisting of the cells bo +
(3,0) + Q2 + 91 and bo1 + Q1 + %(1, 2) + 61. The former is non-
mixed and contains point (11, —2) corresponding to (11, 0) on the
slice which is also non-mixed under alg. B, whereas the latter cell
is 0-mixed, hence 1-mixed and contains the integer point (9,0)
corresponding to point (9,2) on the slice which is also 1-mixed
under alg. B. o

The secondary cell Qo+ (1, 2)+ % (1,2)+67 is I-mixed, hence 2-
mixed and contains the integer points (7,2), (5,4) corresponding
to the points (7,4), (5, 6) of the slice respectively. These are also
2-mixed under alg. B. Table 6 illustrates cor. 7 and 8, where the
summands come from Qp,Q1 and Q2 respectively. Recall that
co1 := (1,0) + 10, c14 := (2,4) + 414 and c15 := (6,0) + d15.



