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ABSTRACT
Resultants are defined in the sparse (or toric) context in or-
der to exploit the structure of the polynomials as expressed
by their Newton polytopes. Since determinantal formulae
are not always possible, the most efficient general method
for computing resultants is as the ratio of two determinants.
This is made possible by Macaulay’s seminal result [15] in
the dense homogeneous case, extended by D’Andrea [6] to
the sparse case. However, the latter requires a lifting of
the Newton polytopes, defined recursively on the dimen-
sion. Our main contribution is a single lifting function of
the Newton polytopes, which avoids recursion, and yields
a simpler algorithm for computing Macaulay-type formulae
of sparse resultants, in the case of generalized unmixed sys-
tems, where all Newton polytopes are scaled copies of each
other. In the mixed subdivision used to construct the ma-
trices, our algorithm defines significantly fewer cells than
D’Andrea’s, and is easier to implement and analyze, though
the matrices are same in both cases. Our approach prov-
ably extends to mixed systems of up to 4 polynomials, and
those whose Newton polytopes have a sufficiently different
face structure, but it should be generalizable to any mixed
system. Our Maple implementation is applied to study a
full example.

Keywords
Sparse resultant, Macaulay formula, Minkowski sum, mixed
subdivision, generalized unmixed system

1. INTRODUCTION
Resultants are fundamental constructions for studying and

solving algebraic systems; for instance, they reduce system
solving to linear algebra or to factoring univariate polyno-
mials. The sparse (or toric) resultant captures the structure
of the polynomials by combinatorial means and constitutes
the cornerstone of sparse elimination theory [3, 13].

The resultant is defined for a system of n+1 polynomials
in n variables over coefficient ring K. It is the unique, up
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to sign, integer polynomial over K which vanishes precisely
when the system has a common root. The classical, or pro-
jective, resultant expresses solvability of a system of dense
polynomials fi ∈ K[x1, . . . , xn] in Pn over the algebraic clo-
sure K. The sparse, or toric, resultant expresses solvability
of a system of Laurent polynomials fi ∈ K[x±1

1 , . . . , x±1
n ]

over a toric variety X, defined by the supports of fi, s.t.
(K

∗
)n is a dense subset of X.

A resultant is most efficiently expressed by a resultant
matrix: this is generically nonsingular, its determinant is a
multiple of the resultant, and the determinant’s degree wrt
the coefficients of one polynomial equals that of the resul-
tant. For n = 1 there are resultant matrices, named after
Sylvester and Bézout, whose determinant equals the resul-
tant. Unfortunately, such determinantal formulae do not
generally exist for n > 1, except for specific cases, e.g. [7, 9,
10, 14]. Macaulay’s seminal result [15] expresses the extra-
neous factor as a minor of the resultant matrix, for classical
resultants of dense homogeneous systems, thus yielding the
most efficient general method for computing such resultants.

Resultant matrices for the sparse resultant were first con-
structed in [1]. The construction relies on a lifting of the
given polynomial supports, which defines a mixed subdi-
vision of their Minkowski sum into mixed and non-mixed
cells, then applies a perturbation δ so as to define the in-
teger points that index the matrix. The algorithm was ex-
tended in [2, 4, 17]. In the case of dense systems, the matrix
coincides with Macaulay’s numerator matrix.

Extending the Macaulay formula to sparse resultants had
been conjectured in [2, 3, 11, 13, 17]; it was a major open
problem in elimination theory. We cite [17, p.219], where
Pω,δ is the extraneous factor, and ω denotes the lifting: “It
is an important open problem to find a more explicit formula
for Pω,δ in the general sparse case. [ . . . ] This problem is
closely related to the following empirical observation. For
suitable choice of δ and ω, the matrix Mδ,ω seems to have
a block structure which allows to extract the resultant from
a proper submatrix. ”

D’Andrea’s fundamental result [6] answers the conjecture
by a recursive definition of a Macaulay-type formula, cf
sec. 3. But this approach does not offer a global lifting,
in order to address the stronger original conj. 1. Let M
be the resultant matrix, also known as Newton matrix, and
M (nm) its submatrix indexed by points in non-mixed cells
of the mixed subdivision.

Conjecture 1. [11, Conj.3.1.19] [2, Conj.13.1] There
exist perturbation vector δ and n + 1 lifting functions for
which the determinant of matrix M (nm) divides exactly the



determinant of Newton matrix M and, hence, the sparse re-
sultant of the given polynomial system is det M/detM (nm).

Our main contribution is to give an affirmative answer to
this stronger conjecture by presenting a single lifting which
constructs Macaulay-type formulae for generalized unmixed
systems, i.e. when all Newton polytopes are scaled copies of
each other. We state our main result, to be proven in sec. 4:

Theorem 2. The global lifting of sec. 2 produces a Ma-
caulay-type formula for the sparse resultant of a system of
polynomials with scaled Newton polytopes.

Our algorithm is generalized, in sec. 5, to certain mixed
systems: those with n ≤ 3, and reduced systems, defined
in [18] to possess sufficiently different Newton polytopes.
Most of these cases have been studied: reduced systems were
settled in [5], and bivariate systems (n = 2) in [8], by directly
establishing the extraneous factor. Our approach should
eventually make the single-lifting algorithm applicable to
the fully general case.

Using a unique lifting function essentially means that we
consider a deformed system, defined by adding a new vari-
able t so that each input monomial xa gets multiplied by tb,
where b ∈ Z is the lifting value of a ∈ Zn. Such deforma-
tions capture the system’s behavior at toric infinity, hence
lie at the heart of most theorems in sparse elimination (e.g.
sparse homotopies, sparse resultants, the sparse Nullstellen-
satz). Such combinatorial methods consitute one of the two
main approaches for studying sparse resultants, e.g. [2, 3,
7, 16, 17], the other relying on Koszul complexes and their
generalizations, e.g. [9, 10, 14].

D’Andrea’s [6] recursive construction requires one to asso-
ciate integer points with cells of every dimension from n to 1.
Our algorithm constructs the resultant matrix directly, with-
out recursion, by examining only n-dimensional cells. These
are more numerous than the n-dimensional cells in [6] but
our algorithm defines significantly fewer cells totally, and
is overall simpler, which is important for implementing and
analyzing the algorithm. The disadvantage of our method
is to consider extra points besides the input supports.

Existing public-domain Maple implementations cover only
the original Canny-Emiris construction [2], either standalone1

or as part of library Multires2. We have implemented this
paper’s algorithm in Maple; it is available upon request by
the authors.

The rest of the paper is structured as follows. The next
section introduces some necessary notions, and defines the
single lifting that produces Macaulay-type formulae. Sec.
3 recalls the recursive algorithm of [6], and sec. 4 proves
the equivalence of the two constructions. Sec. 5 sketches the
extension of our algorithm to mixed systems. Sec. 6 analyzes
the complexity of both algorithms. The appendix offers a
full example computed by our implementation.

2. SINGLE LIFTING CONSTRUCTION
For any polytopes or point sets A, B, let 〈A〉 denote the

affine span (or hull) of A over R and 〈A,B〉 the affine span
of A ∪ B over R.

Let the polynomials’ supports be A0, . . . , An ⊂ Zn with
Newton polytopes

Q0, . . . , Qn ⊂ R
n, Qi = CH(Ai),

1http://www.di.uoa.gr/∼emiris/soft alg.html
2http://www-sop.inria.fr/galaad/logiciels/multires.html

where CH(·) denotes convex hull. As matrix construction al-
gorithms typically do, we define a regular and fine (or tight)
mixed subdivision of the Minkowski sum

Pn
i=0 Qi; cf [3, 13].

Regularity implies the subdivision is in bijective correspon-
dence with the face structure of the upper (or lower) hull
of the Minkowski sum of Q0, . . . , Qn after they are lifted to
Rn+1. Each cell in Rn is written uniquely as the Minkowski
sum of faces Fi of the Qi. A fine subdivision is characterized
by an equality between cell dimension and the sum of the
faces’ dimensions. We focus on cells of maximal dimension
n, and call them maximal or, simply, cells. We distinguish
them as mixed and non-mixed: the former are the Mink-
owski sum of n edges and a vertex. Mixed cells are i-mixed
if this vertex lies in Ai. The type of a cell is either i-mixed
or non-mixed.

The Minkowski sum
Pn

i=0 Qi is perturbed by a sufficiently
small and in sufficiently generic position vector δ ∈ Qn. Let
Z be the integer lattice generated by

Pn
i=0 Ai. The lattice

points in E = Z ∩ (
Pn

i=0 Qi + δ) are associated to a unique
maximal cell of the subdivision, and this allows us to con-
struct a resultant matrix M whose rows and columns are
indexed by these points.

Definition 1. Let p ∈ E lie in a cell F0 + · · · + Fn + δ of
the perturbed mixed subdivision, where Fi is a face of Qi.
The row content (RC) of p is (i, j), if i ∈ {0, . . . , n} is the
largest integer such that Fi equals a vertex aij ∈ Ai.

The main idea of both our and D’Andrea’s algorithms is
that one point, say b01 ∈ Q0, is lifted significantly higher.
Then, the 0-th summand of all maximal cells is either b01

or a face not containing it. In D’Andrea’s case, facets not
containing b01 correspond to different subsystems where the
algorithm recurses (each time on the integer lattice specified
by that subsystem). In designing a unique lifting, the issue
is that points appearing in two of these subsystems may be
lifted differently in different recursions. To overcome this,
we introduce several points cil, for different l, very close (wrt
Z) to every bij , which is lifted very high at recursion i by
D’Andrea’s algorithm. This captures the different roles bij

may assume.
Algorithm B. Our algorithm uses E to index the rows

(and columns) of the numerator matrix of our Macaulay-
type formula. In particular, polynomial xp−aijfi fills in the
row indexed by the lattice point p in def. 1. We now focus
on generalized unmixed systems, where

Qi = kiQ ⊂ R
n,

for some n-dimensional lattice polytope Q and ki ∈ N∗, i =
0, . . . , n. Then, the denominator shall be indexed by points
lying in non-mixed cells.

Definition 2. For i = 0, . . . , n− 1, and any (n− i)-dimen-
sional face kiFij ⊂ Qi, where j ranges over all such faces,
let δij ∈ Qn denote a perturbation vector s.t.:

(1) it lies in the relative interior of kiFij ,

(2) it is sufficiently small compared to lattice Z, and ‖δij‖ ≪
‖δ‖, where ‖ · ‖ is Euclidean norm,

(3) it is sufficiently generic to avoid all edges in the mixed
subdivision of

Pn
i=0 Qi.

Let bij , for some valid j > 1, be vertex of Qi. We shall
use the perturbation vectors of def. 2 to define additional
points not contained in the input supports.



Definition 3. Alg. B defines points cij ∈ Qi ∩ Qn. First,
c01 := b01 + δ01. For i = 0, . . . , n−2 and any Fij as in def. 2,
choose facets F(i+1)h ⊂ Fij s.t.:

(1) kiF(i+1)h does not contain bij , and

(2) ki+1F(i+1)h does not contain any of the already defined
c(i+1)l’s.

For each such facet set: c(i+1)h := b(i+1)h + δ(i+1)h.

The previous definition implies a many-to-one mapping
from the set of cij ’s to that of bij ’s: It reduces to a bijec-
tion when restricted to a fixed face Fij ⊂ Qi containing
bij . Condition 1 of def. 2 implies that cij does not lie on a
face of dimension < n − i and lies in the interior of (n − i)-
dimensional Fi. We can reduce the number of the cij ’s in
alg. B, but this would complicate the subsequent proofs.

For an application of def. 3 when n = 2, see fig. 1a, where
we define points cij also on edges.

Definition 4. Let h0 ≫ h1 ≫ . . . ≫ hn−1 ≫ 1. Alg. B
uses sufficiently random linear functions Hi, i = 0, . . . , n, s.t.

1 ≫ Hi(aij) > 0, and Hi ≫ Ht, i < t,

where aij ∈ Ai and i, t = 0, . . . , n, j = 1, . . . , |Ai|. Alg. B
defines global lifting β as follows:
(1) cij 7→ hn−i

i , cij ∈ kiFij ⊂ Qi, i = 0, . . . , n − 1; this is
called primary lifting.
(2) aij 7→ Hi(aij), aij ∈ Ai, i = 0, . . . , n.

Let F β denote face F lifted under β. Now cβ
tj , for all valid

j, is much higher, resp. lower, than any cβ
ij , i > t, resp. i < t.

The β-induced subdivision contains edges with one or two
vertices among the cij , and edges from the Qi. The vertex

set of the upper hull of Qβ
i contains some or all of the cβ

ij

and the lifted vertices of Qi.
When all Qi are simplices, as in the classical dense case, it

suffices to apply a primary lifting to one point per Qi. Thus
our scheme generalizes the approach by Macaulay [15].

The resultant matrix constructed by alg. B is indexed by
all lattice points in E . To decide the content of each row,
every point is associated to a unique (maximal) cell of the
mixed subdivision according to def. 1. The t-mixed cells
contain lattice points as follows:

p ∈ k0E0 + · · · + kt−1Et−1 + ctj + kt+1Et+1 + · · · + knEn ∩ Z

for edges Ei ⊂ Q spanning Rn. This gives optimal writing

p = p0+ · · ·+pt−1+(btj +δtj)+pt+1+ · · ·+pn, pi ∈ Ai∩Ei.

Hence, the row indexed by p, as with matrix constructions
in [2, 6], contains a multiple of ft(x):

xp0+···+pt−1+pt+1+···+pnft(x),

and the diagonal element is the coefficient of btj in ft(x).
Similarly, for the rows corresponding to lattice points in non-
mixed cells.

3. RECURSIVE CONSTRUCTION
We discuss D’Andrea’s recursive construction of a Macau-

lay-type formula [6]. There are certain free parameters in
the algorithm which we specify so as to obtain a version
very similar to our approach.

At the input of the 0-step the algorithm may use an ad-
ditional polytope mQ, for any m ∈ R, which we omit.We
describe the t-th recursive step, for t = 0, 1, . . . , n − 1.

Algorithm A. The input are polytopes

l0P
(t), . . . , lt−1P

(t), ktP
(t), . . . , knP (t) ⊂ R

n−t, li ∈ [0, ki]∩Q,

the integer lattice L(t) spanned by
Pn

i=t Ai ∩ kiP
(t), and

perturbation vector δt ∈ Qn−t. Here, kiP
(t), i ≥ t, is an

(n− t)-dimensional face of kiQ, thus P (0) = Q. Also, P (t) is

a facet of P (t−1), and liP
(t), i < t, is homothetic to kiP

(t).
These constructions shall be defined at the Recursion Phase.
Also, L(0) = Z and δ0 = δ.

Construction Phase: Vertex btj ∈ ktP
(t) ∩ At, is lifted

to 1. We require that btj = ctj − δtj . All other vertices of all
input polytopes are lifted to 0. This is the primary lifting
which partitions the Minkowski sum of the input polytopes
into a primary cell

l0P
(t)+ · · ·+ lt−1P

(t)+btj +kt+1P
(t)+ · · ·+knP (t)+δt, (1)

of dimension n − t, and several secondary cells. Each sec-
ondary cell is defined by an inner normal v ∈ Qn−t to a facet
of ktP

(t) not containing btj .
Polytopes

Pt−1
i=0 liP

(t), kt+1P
(t), . . . , knP (t) are lifted by

applying the restriction of β on them. We consider β fixed
throughout the algorithm. The upper hull of the Minkowski
sum of the lifted polytopes induces a mixed subdivision of
Pt−1

i=0 P (t) +kt+1P
(t) + · · ·+knP (t), which is then perturbed

by δt. The lattice points p of L(t) contained in the perturbed
subdivision, are assigned RC by def. 1. This also assigns RC
to points p+btj contained in the intersection of (1) with L(t).
Let us take care of the cij . If point p lies in

(F + Ft+1 + · · · + Fn + δt) ∩ L(t), (2)

where Fi ⊂ kiQi, i > t, F ⊂
Pt−1

i=0 liP
(t), having RC(p) =

(h, j), where Fh = chj = bhj + δhj , then the corresponding
matrix row is filled in by xp−bhj fh.

Face F ⊂
Pt−1

i=0 P (t) in (2), can be analyzed as F = l0F0+

· · · + lt−1Ft−1, where Fi ⊂ P (t) for i < t. Moreover, every
cell in (1) is the Minkowski sum of btj and the cell in (2).

Mixed cells of type 0 are defined here as in sec. 2. A
t-mixed cell wrt alg. A, for t > 0, shall have n − t lin-
ear summands from polytopes kt+1P

(t), . . . , knP (t) and a
0-dimensional summand from polytope

Pt−1
i=0 liP

(t). This
summand can be analyzed as l0p0 + · · · + lt−1pt−1, where
pi ∈ P (t), for i = 0, . . . , t − 1 and lipi stands for a scalar
multiple of pi, seen as a vector. This leads to:

Lemma 3. The maximal cells at step t of alg. A are, for
some j and li ∈ [0, ki], of the form:

l0F0 + · · ·+ lt−1Ft−1 + btj +kt+1Ft+1 + · · ·+knFn + δt, (3)

where Fi is the projection of a face of the upper hull of P (t)

lifted by β, dim(〈F0, . . . , Ft−1, Ft+1, Fn〉) = n − t. Specifi-
cally, the t-mixed cells in alg. A are:

l0p0 + · · ·+ lt−1pt−1 + btj +kt+1Et+1 + · · ·+knEn + δt, (4)

where Et+1, . . . , En, are projections of edges on the upper
hull of P (t) lifted by β, dim(〈Et+1, . . . , En〉) = n − t, and

points pi ∈ P (t), for i = 0, . . . , t − 1 .

Recursion Phase: When t = n − 1, the algorithm ter-
minates, since it has reached the Sylvester case. Otherwise,
it recurses: let P (t+1) be the facet of P (t) supported by v.



The (perturbed) secondary cell corresponding to v is

Fv = l0P
(t+1) + · · · + lt−1P

(t+1) + CH(btj , ktP
(t+1))

+kt+1P
(t+1) + · · · + knP (t+1) + δt.

(5)

Its associated diameter is

dv = btj · v − min
p∈CH(btj ,ktF )

{p · v} ∈ N
∗,

where · stands for inner product. We define two sublattices

of L(t): L
(t)
+ is spanned by

Pn
i=t+1 Ai ∩ kiP

(t+1) and L
(t)
v

is the sublattice orthogonal to v. They have the same di-

mension, so we define the (finite) index indv = [L
(t)
v : L

(t)
+ ],

equal to the quotient of the volumes of their base cells. Let

q range over the indv coset representatives for L
(t)
+ in L

(t)
v .

Let lt ∈ [0, kt] take dv distinct values corresponding to

different values of p · v for all p ∈ (CH(btj , ktP
(t+1)) + δt) ∩

L(t). Note that ltP
(t+1) is homothetic to ktP

(t+1). Let
δ′t ∈ Qn−t be a translation vector such that ltP

(t+1) + δ′t
contains at least one point in (CH(btj , ktP

(t+1))+ δt)∩L(t).

In particular, ltP
(t+1) + δ′t equals ktP

(t+1) iff lt = kt, and
vertex btj iff lt = 0, otherwise it equals (CH(btj , ktP

(t+1))+
δt)∩H , where H is a hyperplane parallel to a supporting hy-

perplane of ktP
(t+1);cf [6, lem.3.3]. By abuse of notation, in

the rest of this paper we shall denote H , and the supporting
hyperplanes of faces ktP

(t+1) and btj of the previous convex
hull, as 〈ltP

(t+1)〉.

Points in (Fv + δt) ∩ L(t) are partitioned into dv subsets
(one per value of lt), called slices, of the form

l0P
(t+1) + · · · + lt−1P

(t+1) + (ltP
(t+1) + δ′t)

+kt+1P
(t+1) + · · · + knP (t+1) + δt ∩ L(t),

(6)

which can be rearranged as

l0P
(t+1) + · · · + ltP

(t+1) + kt+1P
(t+1) + · · ·

+knP (t+1) + δλ ∩ L(t),
(7)

where δλ = δt + δ′t. Moreover, δλ can be decomposed as

δv
λ + δλv, where δv

λ ∈ Qv and δλv ∈ L
(t)
+ ⊗ Q. Now, every

point in (7) corresponds to a point in

l0P
(t+1) + · · · + ltP

(t+1) + kt+1P
(t+1) + · · ·

+knP (t+1) + δλv ∩ (q + L
(t)
+ ),

for some coset representative q. Set δt+1 := δλv−q, L(t+1) :=

L
(t)
+ , and observe that point p belongs in (7) iff point

p′ := p − δv
λ − q (8)

belongs in

l0P
(t+1) + · · · + ltP

(t+1) + kt+1P
(t+1) + · · ·

+knP (t+1) + δt+1 ∩ L(t+1).
(9)

We call this set a piece; δt+1 carries the information to de-
fine the piece from the input polytopes and L(t+1). The
algorithm recurses on each of the indv such pieces. The set

l0P
(t+1), . . . , ltP

(t+1), kt+1P
(t+1), . . . , knP (t+1), δt+1

over L(t+1) is exactly like the original input, only one di-
mension lower. This completes the algorithm.

Remark 1. Since every point p′ in a piece corresponds bi-
jectively to a point p in a slice via the monomial bijection
(8), we shall often consider a piece as a subset of a slice and
omit the translation.

At the end of the recursion, RC is defined on E . Alg. A
defines a partition of E in the form of a collection of mixed
subdivisions of primary cells (of decreasing dimension). The
1-summands from Qi in the cells are defined by any point in
Ai or among the cij , for all valid j, and may be multiplied
by a rational number in (0, ki].

4. EQUIVALENCE OF CONSTRUCTIONS
The single-lifting algorithm is alg. B; its overall effect is

very similar to that of alg. A, since they both use β. The
former partitions E into sets of points in n-dimensional cells
and assigns RC, whereas, as we show in the next lemmas,
alg. A partitions E into subsets which, at step t, lie on the
intersection of a (n − t)-dimensional hyperplane with an n-
dimensional cell of β. Note that the intersection itself, as
a subset of Rn−t does not coincide with the cell of alg. A.
However, their set difference is of infinitesimal volume. Al-
though both algorithms use β to subdivide their input poly-
topes, they do so in a different fashion; alg. B applies β to
every Qi, whereas alg. A does so recursively to a different
set of polytopes at every step.

In the rest of the paper, for simplicity, we shall omit the
translation vectors δt. Moreover, unless otherwise stated,
we shall treat every slice and piece as a polytope and not as
the set of points in the intersection of this polytope with an
appropriate lattice. In particular, we shall be interested only
on the form a slice\piece as a Minkowski sum of polytopes.
The existence of a translation vector, so as this polytope
contains integer points in the lattice under consideration,
shall be implied.

We now establish the correspondence between the two al-
gorithms for t = 0, then generalize to arbitrary t. At step 0
of alg. A, b01 is lifted to 1 while every other vertex of all
input polytopes to 0; this creates primary cell

pr.cell
(A)
0 := b01 + k1Q + · · · + knQ,

and several secondary cells of the form

sec.cell
(A)
0 := CH(b01, k0P

(1)) + k1P
(1) + · · · + knP (1),

each corresponding to a facet P (1) of Q not containing b01.
In alg. B, c01 plays the role of b01 and this leads to a group
of cells covering the corresponding primary cell

pr.cell
(B)
0 := c01 + k1Q + · · · + knQ,

and several groups of cells, each group covering

sec.cell
(B)
0 := CH(c01, k0P

(1)) + k1P
(1) + · · · + knP (1),

which is a typical n-dimensional secondary cell wrt alg. B.

Remark 2. All cells within pr.cell
(A)
0 and pr.cell

(B)
0 differ

only at their first summand; the former are of the form b01 +
F1 + · · · + Fn, whereas the latter are c01 + F1 + · · · + Fn,
where Fi is a face of Qi, since β is used by both algorithms
to subdivide Q1 + · · · + Qn, and c01 = b01 + δ01.

Lemma 4. pr.cell
(A)
0 ∩ E = pr.cell

(B)
0 ∩ E , and points in

this set are assigned the same RC under both algorithms.



Proof. Recall that δ0 = δ and consider the subdivision
of

Pn
i=0 Qi induced by β and compare pr.cell

(A)
0 + δ and

c01 +Q1 + · · ·+Qn +δ = b01 +δ01 +Q1 + · · ·+Qn +δ. These
polytopes differ by δ01, which is very small. Moreover, by

the choice of δ, the boundary of pr.cell
(A)
0 +δ has no points in

Z. Since, by def. 2, ‖δ‖ ≫ ‖δ01‖, the two polytopes contain
the same Z-points. This settles the first claim.

The second claim follows from rem. 2 and the fact that the
two subdivisions may only differ in cells having vertex b01

instead of c01. Since c01 − b01 = δ01 is very small compared
to Z, even these cells contain the same Z-points.

Each sec.cell
(A)
0 is divided by alg. A into slices l0P

(1) +

k1P
(1) + · · · + knP (1), one for each value of l0 ∈ [0, k0].

Each slice is partitioned into pieces on which alg. A recurses
producing (n − 1)-dimensional primary cell

pr.cell
(A)
1 := l0P

(1) + b1j + k2P
(1) + · · · + knP (1), (10)

and secondary cells

sec.cell
(A)
1 := l0P

(2)+CH(b1j , k1P
(2))+k2P

(2)+· · ·+knP (2).
(11)

Every piece of a given slice lies on lattice L(1) and can be
thought of as the intersection of a translation of that slice,
regarded as a polytope, with L(1). Recall that, by rem. 1,
we shall consider a piece as subset of a slice.

Similarly to alg. A, we can partition the corresponding

sec.cell
(B)
0 into slices:

l′0P
(1) + k1P

(1) + · · · + knP (1),

by intersecting CH(c01, k0P
(1)) with a hyperplane parallel to

(a supporting hyperplane of) k0P
(1). Recall that we denote

this hyperplane as 〈l′0P
(1)〉.

Remark 3. Observe that each slice of sec.cell
(B)
0 (resp.

sec.cell
(A)
0 ) parameterized by l′0 (resp. l0), is homothetic to

a facet of this secondary cell, supported by 〈k′
0P

(1)〉 (resp.

〈k0P
(1)〉). Moreover, this homothecy is defined by a ho-

mothecy only on the first summand k0P
(1) of this facet.

Hyperplanes 〈l′0P
(1)〉 and 〈l0P

(1)〉 are identical; they differ

only on the homothecy on k0P
(1) expressed by l′0 and l0

respectively. Obviously, l′0 ≈ l0 because c01 ≈ b01. Note
that we omit the translation vector so that the slice lies
in sec.cell

(B)
0 . Thus, corresponding slices contain the same

points in the lattice L(0) = Z. This, moreover, leads to the
following extension of lem. 4.

Lemma 5. Every maximal cell of the subdivision induced

by β on pr.cell
(A)
1 corresponds to the intersection of hyper-

plane 〈l′0P
(1)〉, for some l′0, with a unique maximal cell in

sec.cell
(B)
0 , of the same type. The cells contain the same

points in L(1), with the same image under RC.

Proof. Any maximal cell in pr.cell
(A)
1 has the form l0F0+

b1j +k2F2+· · ·+knFn, where faces Fi ⊂ P (1), i = 0, 2, . . . , n,

have dimensions adding up to n−1. Recall pr.cell
(A)
1 lies on

a slice of sec.cell
(A)
0 parameterized by the value of l0 hence,

when β is employed, it gives rise to the same subdivision in
every such primary cell. By construction, subspace 〈b01, F0〉

is orthogonal and complementary to 〈P (1)〉.

In k1P
(1), point c1j is lifted sufficiently higher than any

other, so there exist maximal cells in sec.cell
(B)
0 that has

it as summand. The other summands are induced by β on
CH(c01, k0P

(1)), k2P
(1), . . . , knP (1). These n-dimensional cells

of alg. B correspond (when intersected with 〈l′0P
(1)〉) to

(n − 1)-dimensional cells in pr.cell
(A)
1 . It is straightforward

to show that, for l′0 ∈ [0, k0] and any β-induced cell in this

Minkowski sum, its intersection with 〈l′0P
(1)〉 is a β-induced

cell in l′0P
(1) + k2P

(1) + · · · + knP (1)

There exists l′0 ≈ l0 that establishes the lemma, because β
is applied to (n− 1)-dimensional Minkowski sums which are
almost identical, and the effect of b1j and c1j is the same
in what concerns the lattice points in corresponding cells,
following the proof of lem. 4.

In each sec.cell
(B)
0 we distinguish 2 types of cells: cells in

pr.cell
(B)
1 := CH(c01, k0P

(1)) + c1j + k2P
(1) + · · · + knP (1),

(12)

which, by lem. 5, contains exactly the integer points in all
primary cells of alg. A of the form (10) (for each slice/coset),

and for each facet P (2) of P (1), cells in

sec.cell
(B)
1 := CH(c01, k0P

(2)) + CH(c1j , k1P
(2))

+k2P
(2) + · · · + knP (2).

(13)

Note that both pr.cell
(B)
1 and sec.cell

(B)
1 are n-dimensional,

whereas pr.cell
(A)
1 and sec.cell

(A)
1 are (n − 1)-dimensional.

Remark 4. Every maximal cell in sec.cell
(B)
1 must have

summands F0 = CH(c01, G0), F1 = CH(c1j , G1), for some

G0 ⊂ k0P
(2) and G1 ⊂ k1P

(2).

A similar argument as in lem. 5, implies that (13) contains
exactly the integer points in the union of all secondary cells
(11) defined over the various values of l0 ∈ [0, k0], for a given
j. The recursion steps of alg. A, for t ≥ 2 are defined over
a chain of facets P (2) ⊃ P (3) ⊃ · · · ⊃ P (n−1). Hence, every

pr.cell
(A)
t , for t > 1, contains integer points in sec.cell

(B)
1 ∩

Z. Therefore, we generalize the correspondence between the

two algorithms by focusing on sec.cell
(B)
1 .

Lemma 6. (Main) Every maximal cell of the subdivision

induced by β on pr.cell
(A)
t , for t ≥ 2, corresponds to the

intersection of hyperplane 〈l′t−1P
(t)〉, for some l′t−1 ≈ lt−1 ∈

[0, kt−1]∩Q, with a unique maximal cell in sec.cell
(B)
1 , of the

same type. The cells contain the same points in lattice L(t)

with the same image under RC.

Proof. Primary cells of step t lie on (n− t)-dimensional

slices of the (n−t+1)-dimensional sec.cell
(A)
t−1, parameterized

by the value of lt−1 ∈ [0, kt−1]:

l0P
(t) + · · · + lt−1P

(t) + ktP
(t) + · · · + knP (t). (14)

Similarly to rem. 3, let l0, . . . , lt−1, li ∈ [0, ki] ∩ Q, define
the homothecies on the first t summands of (14) and the cor-

responding hyperplanes 〈l0P
(t)〉, . . . , 〈lt−1P

(t)〉. Note, that

pr.cell
(A)
t is a subset of (14) and is subdivided by β into

maximal cells of the form (3).

Intersecting sec.cell
(B)
1 with the above hyperplanes, yields

a (n − t)-dimensional subset:

l′0P
(t) + · · · + l′t−1P

(t) + ktP
(t) + · · · + knP (t). (15)



This subset can also be obtained by directly intersecting

sec.cell
(B)
1 with 〈lt−1P

(t)〉. Now, l′i ≈ li, for i = 0, 1, . . . , t−1
because cij ≈ bij . For i = 0, . . . , t−1, each l′i defines a hyper-
plane 〈l′iP

(t)〉 identical to 〈liP
(t)〉, except on the homothecy

on the i-th summand. Hence, (15) is very similar to (14) in

the sense that they contain the same integer points in L(t)

and their volumes differ infinitesimally.

By def. 3 there exist n-dimensional cells in sec.cell
(B)
1

which have ctj as a summand. The intersection of each
of these cells with (15) shall also have ctj as a summand,

because this is the only point lifted highest in P (t). These
cells correspond to the primary cell wrt alg. A of the slice
(14). Moreover, this intersection is a β-induced cell in (15):

l′0F0 + · · · + l′t−1Ft−1 + ctj + kt+1Ft+1 + · · · + knFn, (16)

which contains the same integer points as (3). Since β is
applied on (n − t)-dimensional polytopes which are almost
identical, both (3) and (16) are of the same type.

Corollary 7. Using the notation of lem. 3, in particular
for t-mixed cells of alg. A in the form of (4) and t, j, a t-
mixed cell of alg. B is of the form:

k0E0+ · · ·+kt−1Et−1+ctj +kt+1Et+1+ · · ·+knEn +δt ∩L,

where Ei is the projection of an edge of Qβ,

(a) 〈E0, . . . , Et−1〉 is a t-dimensional space complemen-

tary to 〈P (t)〉, and for i < t, kiEi = (cij , kipi), where

pi ∈ P (i) in lem. 3, and

(b) edges Et+1, . . . , En are the same as in lem. 3,(4).

Proof. For t = 0, the corollary follows from rem. 2.
All 1-mixed cells wrt alg. B lie in (12), since every max-

imal cell in it has c1j as a summand. By lem. 5, edges
k2E2, . . . , knEn span the (n − 1)-dimensional space 〈P (1)〉.
Hence, edge k0E0 has to be of the form (c01, k0p0), where

p0 ∈ P (1), by lem. 5, is as in lem. 3,(4).
Similarly, lem. 6 implies that for t > 1, the last (n −

t) edges of any t-mixed cell wrt alg. B span the (n − t)-

dimensional space 〈P (t)〉, because β induces the same sub-
division on the last n − t summands of (14) and (15). For
the cell to be maximal, 〈k0E0, . . . , kt−1Et−1〉 must be a t-

dimensional space complementary to 〈P (t)〉. By construc-
tion (see proof of lem. 6), each kiEi, for i < t, is an edge in

CH(cij , kiP
(t)) of the form (cij , kipi), where pi ∈ P (t) is as

in lem. 3,(4).

Wen now consider non-mixed cells, by extending cor. 7:

Corollary 8. Consider any non-mixed cell of alg. A,
which has the form of (3) in lem. 3. It corresponds to cell:

CH(c01, k0F0) + · · · + CH(c(t−1)j , kt−1Ft−1) + ctj

+kt+1Ft+1 + · · · + knFn,

which is a non-mixed cell defined by β, where

(a) the F0, . . . , Ft−1 are projections of faces in Qβ, for i <
t, and 〈CH(c01, k0F0), . . . , CH(c(t−1)j , kt−1Ft−1)〉 is a
t-dimensional space complementary to 〈Ft+1, . . . , Fn〉,

(b) F0, . . . , Ft−1, Ft+1, . . . , Fn are the same in both cells.

We have shown that each row of the constructed matrices,
indexed by points of E lying in a mixed or non-mixed cell, is
identical for both algorithms, where E is the same pointset
for both algorithms.

Theorem 9. The Macaulay-type formula for the sparse
resultant of generalized unmixed systems, constructed by the
global lifting of sec. 2, and that constructed by D’Andrea’s
approach [6] are identical.

As a consequence of thm. 9 and [6, thm. 3.8], follows thm. 2.

5. TOWARDS MIXED SYSTEMS
In studying systems with different Newton polytopes, we

need the following:

Definition 5. The set of polytopes Q1, . . . , Qh ⊂ Rn, s.t.
dim(〈Q1, . . . , Qh〉) = h − 1, is essential if every subset of
cardinality j, 1 ≤ j < h spans a space of dimension ≥ j.

The sparse resultant is well defined only for essential sets
of Newton polytopes. An essential set defines a Minkowski
sum of dimension h− 1 but the converse is not always true.

Alg. A admits one main modification in the mixed case:
At the Recursion Phase, the faces Fi ⊂ Qi supported by
vector v are not always the same. Let us describe the 0-th
iteration for simplicity. We assume there is no additional
polytope. Consider the n-dimensional secondary cell:

CH(b01, F0) + F1 + · · · + Fn ⊂ R
n,

where Fi ⊂ Rn−1. Wlog, let {F1, . . . , Fk} be an essential
subset and let L+(k) be the integer lattice it defines. The
algorithm recurses on lattice L+(k) and polytope set (rep-
resenting a piece)

CH(b01, F0) ∩ Λ+(k), F1, . . . , Fk,

Fk+1 ∩ Λ+(k), . . . , Fn ∩ Λ+(k),
(17)

where Λ+(k) ranges over all possible homothetic copies of
L+(k) defined by the different cosets of L+(k) in its satu-
ration, and the different slices that can be defined as inter-
sections with CH(b01, F0). Alg. A distinguishes two cases,
according to whether there is one or more essential subsets
of {F1, . . . , Fn}. In the former case, v and the correspond-
ing secondary cell are called admissible. For non-admissible
cells, all integer points are considered as non-mixed, i.e.
treated as if they lied in non-mixed cells. For admissible
cells, integer dFv is defined [6, sec.4] (cf [16]), and dFv pieces
of the form (17) are (arbitrarily) selected. Lattice points la-
beled as mixed in these pieces by the recursive application of
alg. A are labeled as mixed overall, the rest are non-mixed.

Reduced systems are such that, for any vector v ∈ Rn,
there is some i ∈ {1, . . . , n} so that the face supported by v
in Qi is a vertex. For us, it suffices that this holds for fewer
v [5]. For such systems, as well as for arbitrary systems
of 3 bivariate polynomials (n = 2), any sufficiently generic
global lifting that lifts one vertex b01 ∈ Q0 sufficiently high,
thus β too, produces a Macaulay-type formula. The proof
is subsumed by that for n = 3 below; cf also [5, 8].

Alg. B is modified so that def. 3 applies up to i = n−1. We
sketch a proof that it produces the same matrix as alg. A, by
extending the correlation between maximal cells, established
in the unmixed case. Our proof could be extended to n >
3, but seems complicated; we expect that a more elegant
approach is possible.



In non-admissible secondary cells of alg. A, for any n,
we show both algorithms behave the same way, namely the
corresponding lattice points lie in non-mixed cells of alg. B.
We demonstrate the contrapositive by focusing on a mixed
cell of alg. B and a corresponding secondary cell of alg. A,
following lem. 6.

Lemma 10. Every t-mixed cell by alg. B, when intersected
with a (n − t)-dimensional hyperplane as in lem 6, is con-
tained in an admissible secondary cell of step t−1 of alg. A.

Proof. Any t-mixed cell of alg. B is E0 + · · ·+ Et−1 +
atj+ Et+1 + · · · + En, where atj is either a vertex of Qi

or some ctj in the interior of an (n − t)-dimensional face,
and edges Et+1, . . . , En span an (n − t)-dimensional space.
This cell is intersected by a (n− t)-dimensional hyperplane,
similarly to lem. 6. The intersection is contained in a t-
primary cell of alg. A with t-summand btj ; it lies in a piece
of (t − 1)-secondary cell

F0 + · · · + Ft−2 + CH(b(t−1)h, Ft−1) + Ft + · · · + Fn,

where the Fi are faces of the Qi, i = 1, . . . , n, supported by
the same vector, with dim Fi ≤ n−t. We claim {Ft, . . . , Fn}
contains a unique essential set, with cardinality r + 1, span-
ning an r-dimensional space, which is defined as follows: Ft

and r ≤ n− t faces, denoted wlog Ft+1, . . . , Ft+r, where r is
minimal so that dim H = r, for H = 〈Ft, . . . , Ft+r〉.

By hypothesis, dim〈Ft+1, . . . , Fn〉 = n−t, since a subspace
is spanned by the Ei and has same dimension. So subsets
indexed in {t + 1, . . . , n} span a space of dimension at least
equal to their cardinality. In addition, none of the Fi, i >
t+r is contained in H . So every subset indexed in {t, . . . , n}
containing {t} ∪ J , for J ⊂ {t + r + 1, . . . , n}, will be of
cardinality ≤ r + |J | and span a space of dimension r + |J |.
Hence there are no other essential subsets.

For n = 3, all admissible secondary cells have dFv pieces,
since there is no extra artificial polytope in the input of
alg. A. We distinguish cases on the dimension k − 1 of the
space generated by the essential set {F1, . . . , Fk}, 1 ≤ k ≤ 3,
on which the recursion of alg. A occurs:
(1) If k − 1 is 0 or 1, the recursion is either trivial (occurs
on a vertex), or corresponds to the Sylvester case.
(2) If k−1 = 2 and dim Fi = 1, i = 1, 2, 3, the two algorithms
behave similarly, since def. 3 defines points c2j in the edges
of Q2 and the main lemma applies. Notice that dim Q2 ≥ 1;
otherwise the Qi’s would not form an essential set.
(3) If k − 1 = 2, dimFi ∈ {1, 2} for i = 1, 2, 3 and at
least one face is 2-dimensional. If dim F1 = 2, then lem. 6
applies. Otherwise, dim F1 = 1 and dim F2 ≥ 1. Irrespective
of dim F2, the c2j play the role of distinguished points and
lem. 6 applies again.

6. COMPLEXITY
We analyze the worst-case asymptotic bit complexity of

our algorithm and D’Andrea’s, when they construct resul-
tant matrices in sparse representation. We believe these
bounds are not optimal and further work may tighten them.

Alg. B, implemented by the direct approach of [2], com-
prises of two main steps. First, the computation of the ver-
tices of each Qi is typically dominated. Second, we need
RC for all p ∈ E , in order to construct the Macaulay-type
formula. Both steps can be reduced to linear programming
with C constraints in V variables, and coefficient bitsize B.

If we use a poly-time algorithm such as Karmarkar’s, the
bit complexity is C5.5V 2B2, where B depends on the bit-
size of the input coordinates and of δ, δij . It is related to the
probability that the chosen perturbations are not sufficiently
generic; see [2] for the full analysis.

Let m be the maximum number of vertices of the Qi,
r the total number of cij ’s, and let O∗(·) indicate that we
ignore polylog factors. The linear programs have complexity
O∗(r2B2) = O∗(mnB2) because r is bounded by the total

number O(m⌊n/2⌋) of faces in Q. In an output sensitive
manner, r = O(|E|), because the addition of every cij is
made in order to handle at least one distinct point in E .
Hence, the complexity of constructing the Macaulay-type
formula is O∗(|E|mnB2), or O∗(|E|3B2). These bounds hold
also for matrices in dense representation. For generalized
unmixed systems, one can use |E| = O(knenD) from [2,
thm.3.10], where k = maxi{ki}, D is the total degree of the
sparse resultant as a polynomial in the input coefficients,
and e the basis of natural logarithms.

A better implementation finds RC for one point in a max-
imal cell, then enumerates all points in this cell in time pro-
portional to their cardinality multiplied by a polynomial in
m, n, B [12, thm.16]. The neighbours of these points which
lie outside the cell will yield new cells, so as to explore the
entire Minkowski sum; detecting new cells does not increase
the overall complexity. If S ≤ |E| is the number of max-
imal cells containing at least one lattice point, alg. B has
complexity O∗(SmnB2 + |E|), where typically, S ≪ |E|.

For alg. A, complexity is dominated by O(|E|n) linear pro-
grams, since every p ∈ E may require O(n) of them for its
image under RC to be determined. Each linear program has
bit complexity O(n7.5m2B2). This process essentially de-
cides in which slice of which secondary cell lies p. Although
this subdivision contains much more cells than alg. B, the
asymptotic analysis indicates that the latter may be slower.
The optimal implementation for constructing the Macaulay-
type formula should combine ideas from both algorithms.
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Appendix: Example
Let n = 2, A0 = A2 = {(1, 0), (0, 1), (0, 2), (1, 2), (3, 0)}, and
A1 = {(2, 0), (0, 2), (0, 4), (2, 4), (6, 0)}, so the lattice generated
is Z2. k0 = k2 = 1, k1 = 2. Now v1 = (−1, 0), v2 = (0,−1),
v3 = (−1,−1). Let δ = (−1/30,−1/30), (fig. 1a).

Alg. B: Let b01 := (1, 0) ∈ Q0, b12 := (0, 2), b14 := (2, 4),
b15 := (6, 0) ∈ Q1, δ01 = (1/1000, 1/1500), δ12 = (0, 1/2000),
δ14 = (−1/3000, 0), δ15 = (−1/2000, 1/2000). Consider integer
points and their cells (fig. 1c):

point cell in secondary cell wrt v2 type
(1, 7), (2, 7) (c01, (0, 2)) + ((0, 4), c14) + (0, 2) + δ 2
(3, 7) (c01, (0, 2)) + c14 + ((0, 2), (1, 2)) + δ 1

where the summands come from Q0, Q1, Q2 resp. The two cells
together with cell σ = CH(c01, (0, 2), (1, 2))+ c14 +(1, 2)+ δ, and
some infinitesimal cells which do not contain any integer points,
belong to the secondary cell wrt to v2 of alg. A, which contains
the same integer points. Points (1, 7), (2, 7), (3, 7) correspond (via
an appropriate translation) to points of a piece of the secondary
cell on which alg. A recurses. Cell σ does not contain any integer
points because of the choice of δij , δ.

Consider points corresponding to a piece of the secondary cell
wrt to v3, of alg. A, and their cells by β:

point cell in secondary cell wrt v3 type
(4, 7), (5, 6),
(6, 5), (7, 4)

(c01, (1, 2)) + (c15, c14) + (1, 2) + δ 2

(8, 3), (9, 2) (c01, (1, 2)) + c15 + ((3, 0), (1, 2)) + δ 1
(10, 1), (11, 0) CH(c01, (3, 0), (1, 2)) + c15 + (3, 0) + δ non

Consider a piece of the secondary cell wrt to v1, of alg. A. Points
in it lie in the following cells of alg. B:

point cell in secondary cell wrt v1 type
(0, 4) (c01, (0, 1)) + c12 + ((0, 1), (0, 2)) + δ 1
(0, 5) CH(c01, (0, 1), (0, 2)) + c12 + (0, 2) + δ non
(0, 6), (0, 7) (c01, (0, 3)) + (c12, (0, 4)) + (0, 2) + δ 2

Alg. A: b01 is lifted to 1, all other vertices of all polygons are
lifted to 0. This partitions Q0 + Q1 + Q2 into a primary cell
b01 + Q1 + Q2 and 3 secondary cells corresponding to v1, v2, v3,
normals to the facets of Q0 not containing b01. The Q1, Q2 are
lifted using β, which subdivides the primary cell (fig. 1b). This
subdivision “coincides” with the restriction in c01 + Q1 + Q2 of
the subdivision by β, except that the latter uses c01 whereas the
former uses b01, i.e. the integer points in both subdivisions are
the same and are assigned the same RC.

• We study the Recursion Phase on secondary cell:

Fv1
= CH(b01, k0Fv1

) + k1Fv1
+ k2Fv1

,

defined by facet Fv1
= ((0, 1), (0, 2)) ⊂ Q supported by v1.

A1v1
= {(0, 2), (0, 4)}, A2v1

= {(0, 1), (0, 2)}, the lattice gen-
erated by A1v1

+ A2v1
is L+ := 〈(0, 3), (0, 4)〉 ∼= Lv1

∼= Z. The
index of L+ in Lv1

is indv1
= 1 and the coset representative for

L+ in Lv1
is q0 = (0, 0). The v1-lattice diameter is dv1

= 1.
Hence there is one slice corresponding to one piece.

We describe the recursion step on this piece. It contains points
corresponding to (0, 4), (0, 5), (0, 6), (0, 7) lying on the slice of
Fv1

+ δ of the form

(λ̃k0Fv1
+ δ′) + k1Fv1

+ k2Fv1
+ λFv1

+ δ.

To define the piece, following notation in [6], the scalar multiple of

Fv1
is λ̃Fv1

= 29
30

Fv1
and the translation vector is δ′ := ( 1

30
, 0).

Since we do not use an initial additional polytope, λ = 0 and

λv1
:= λ + λ̃ = 29

30
.



Let δλ := δ + δ′ = (0,− 1
30

), and δλ = δv1

λ + δλv1
, where

δv1

λ = (0, 0) ∈ Qv1 and δλv1
= (0,− 1

30
) ∈ L+ ⊗ Q, hence δ0v1

:=

δλv1
− q0 = (0,− 1

30
). So, the slice of Fv1

+ δ is

k1Fv1
+ k2Fv1

+ λv1
k0Fv1

+ δλ, (18)

and the corresponding piece in L+ is

k1Fv1
+ k2Fv1

+ λv1
k0Fv1

+ δ0v1
. (19)

The bijection between points in (18) and (19) is

p = p̄ + δv1

λ + q0 = p̄,

where p ∈ (18) and p̄ ∈ (19). After re-indexing, the input of the
recursion step is:
- the polygons Q0 := k1Fv1

, Q1 := k2Fv1
, and Q2 := 29

30
k0Fv1

which is the additional polytope,
- the lattice L+ := 〈(0, 3), (0, 4)〉 and

- the perturbation vector δ0 := δ0v1
= (0,− 1

30
).

In order to be compatible with β, we choose b01 = b12 = (0, 2)

and apply the primary lifting. This partitions Q0 + Q1 +Q2 + δ0
into a primary b01 + Q1 + Q2 + δ0 and a secondary cell Q0 +
(0, 2) + 29

30
(0, 2) + δ0. Lifting β induces a mixed subdivision on

the primary cell consisting of the cells b01 + (0, 1) + Q2 + δ0 and

b01 + Q1 + 29
30

(0, 1) + δ0. The former is non-mixed and contains

point (0, 5), corresponding to the same point on the slice, which is
also non-mixed under alg. B. The latter cell is 0-mixed, hence 1-
mixed and contains point (0, 4), corresponding to the same point
on the slice, which is also 1-mixed under alg. B. The secondary cell
Q0 +(0, 2)+ 29

30
(0, 2)+ δ0 is 1-mixed, hence 2-mixed and contains

the integer points (0, 6), (0, 7) corresponding to the same points
on the slice. They are also 2-mixed under alg. B.

• We apply recursion on secondary cell:

Fv2
= CH(b01, k0Fv2

) + k1Fv2
+ k2Fv2

,

defined by the facet Fv2
= ((0, 2), (1, 2)) of Q supported by v2.

A1v2
= {(0, 4), (2, 4)}, A2v2

= {(0, 2), (1, 2)} and the lattice
generated by A1v2

+ A2v2
is L+ := 〈(0, 6), (1, 6)〉 ∼= Lv2

∼= Z.
The index of L+ in Lv2

is indv2
= 1 and the coset representative

for L+ in Lv2
is q0 = (0, 0). The v2-lattice diameter is dv2

:=
b01 · v2 − minp∈CH(b01k0Fv2

) p · v2 = 2. Hence, there are two

slices, each containing one piece, and the algorithm recurses on
each such piece.

We analyze the recursion step on the piece of the shifted sec-
ondary cell Fv2

+δ, which contains the integer points correspond-
ing to the points (1, 7), (2, 7), (3, 7) lying on a slice of the shifted
secondary cell Fv2

+ δ of the form

(λ̃k0Fv2
+ δ′) + k1Fv2

+ k2Fv2
+ λFv2

+ δ.

To define this piece we have that Fv2
is λ̃Fv2

= 31
60

Fv2
and the

translation vector δ′ := ( 29
60

, 0). Now λ = 0 and hence λv2
:=

λ + λ̃ = 31
60

. Let δλ := δ + δ′ = ( 9
29

,− 1
30

). Then, δλ can

be written as δλ = δv2

λ + δλv2
, where δv2

λ = (0, 1) ∈ Qv2 and

δλv2
= ( 9

20
,− 31

30
) ∈ L+⊗Q, hence δ0v2

:= δλv2
−q0 = ( 9

20
,− 31

30
).

So, the slice of Fv2
+ δ is

k1Fv2
+ k2Fv2

+ λv2
k0Fv2

+ δλ, (20)

and the corresponding piece in L+ is

k1Fv2
+ k2Fv2

+ λv2
k0Fv2

+ δ0v2
. (21)

The bijection between points in (20) and points in (21) is

p = p̄ + δv2

λ + q = p̄ + (0, 1),

where p ∈ (20) and p̄ ∈ (21).
After re-indexing, the input of the recursion step is:

- the polygons Q0 := k1Fv2
, Q1 := k2Fv2

, and Q2 := 31
60

k0Fv2

which is the additional polytope,

- the lattice L+ := 〈(0, 6), (1, 6)〉 and

- the perturbation vector δ̄ := δ0v2
= ( 9

20
,− 31

30
).

To be compatible with β, we choose b01 = b14 = (2, 4) and

apply the primary lifting; this partitions the Minkowski sum Q0+
Q1 +Q2 + δ̄ into a primary b01 +Q1 +Q2 + δ̄ and a secondary cell
Q0 + (0, 2) + 31

60
(0, 2) + δ̄ . Lifting β induces a mixed subdivision

of the primary cell consisting of the cells b01 + (1, 2) + Q2 + δ̄

and b01 +Q1 + 31
60

(0, 2)+ δ̄. The latter is 0-mixed, hence 1-mixed

and contains the integer point (3, 6) corresponding to point (3, 7)
on the slice which is also 1-mixed under alg. B. The former is
non-mixed and does not contain any integer points.

The secondary cell Q0+(0, 2)+ 31
60

(0, 2)+ δ̄ is 1-mixed, hence 2-

mixed and contains the integer points (1, 6), (2, 6) corresponding
to the points (1, 7), (2, 7) of the slice respectively; they are also
2-mixed under alg. B.

• The last secondary cell is

Fv3
= CH(b01, Fv3

) + k1Fv3
+ k2Fv3

,

defined by the facet Fv3
= ((3, 0), (1, 2)) of Q supported by v3 =

(−1,−1).
A1v3

= {(6, 0), (2, 4)}, A2v3
= {(3, 0), (1, 2)}, the lattice gener-

ated by A1v3
+ A2v3

is L+ := 〈(9, 0), (7, 2)〉 ∼= 2Z and Lv3
∼= Z.

The index of L+ in Lv3
is indv3

= 2 and the cosets representatives
for L+ in Lv3

are q0 = (0, 0) and q1 = (−1, 1). The v3-lattice
diameter is dv3

:= b01 · v3 −minp∈CH(b01k0Fv3
) p · v3 = 2. Hence

there are two slices, each corresponding to two pieces, and the
algorithm recurses on each such piece.

We analyze the recursion step on the two pieces that con-
tain integer points corresponding to points (11, 0), (10, 1), (9, 2),
(8, 3), (7, 4), (6, 5), (5, 6), (4, 7) lying on a slice of the shifted sec-
ondary cell Fv3

+ δ of the form

(λ̃k0Fv3
+ δ′) + k1Fv3

+ k2Fv3
+ λFv3

+ δ.

To define these pieces, we have that the scalar multiple of Fv3

is λ̃Fv3
= 32

60
Fv3

and the translation vector is δ′ := ( 7
15

, 0). Now,

λ = 0 and hence λv3
:= λ+ λ̃ = 32

60
; Let δλ := δ+δ′ = ( 13

30
,− 1

30
).

Then, δλ can be written as δλ = δv3

λ + δλv3
, where δv3

λ =

(1, 1) ∈ Qv3 and δλv3
= (− 17

30
,− 31

30
) ∈ L+ ⊗ Q, hence δ0v3

:=

δλv3
− q0 = (− 17

30
,− 31

30
) and δ1v3

:= δλv3
− q1 = ( 13

30
,− 61

30
).

So, the slice of Fv3
+ δ is

k1Fv3
+ k2Fv3

+ λv3
k0Fv3

+ δλ, (22)

and the corresponding pieces in L+ are

k1Fv3
+ k2Fv3

+ λv3
k0Fv3

+ δ0v3
, (23)

k1Fv3
+ k2Fv3

+ λv3
k0Fv3

+ δ1v3
, (24)

The correspondences between points in the slice and points in the
pieces are

p = p̄ + δv3

λ + q0 = p̄ + (1, 1),

where p ∈ (22) and p̄ ∈ (23), and

p = p̄ + δv3

λ + q1 = p̄ + (0, 2),

where p ∈ (22) and p̄ ∈ (24).
After re-indexing, the input of the recursion step is:

- the polygons Q0 := k1Fv3
, Q1 := k2Fv3

, and Q2 := 32
60

k0Fv3

which is the additional polytope,
- the lattice L+ := 〈(9, 0), (7, 2)〉 and

- the perturbation vectors δ0 := δ0v3
= (− 17

30
,− 31

30
) and δ1 :=

δ1v3
= ( 13

60
,− 61

30
).

As β indicates, we choose b01 = b15 = (6, 0) and apply the
primary lifting.

For the first piece, the lifting partitions the Minkowski sum
Q0 + Q1 + Q2 + δ0 into a primary b01 + Q1 + Q2 + δ0 and a
secondary cell Q0 + (1, 2) + 32

60
(1, 2) + δ0. Lifting β induces a

mixed subdivision on the primary cell consisting of the cells b01 +



(3, 0) + Q2 + δ0 and b01 + Q1 + 32
60

(1, 2) + δ0. The former is non-

mixed and contains point (9, 0), which corresponds to (10, 1) on
the slice which is also non-mixed under alg. B. The latter is 0-
mixed, hence 1-mixed and contains the point (7, 2) corresponding
to the point (8, 3) in the slice which is also 1-mixed under alg. B.

The secondary cell Q0+(1, 2)+ 32
60

(1, 2)+δ0 is 1-mixed, hence 2-

mixed and contains the integer points (3, 6), (5, 4) corresponding
to the points (4, 7), (6, 5) of the slice respectively which are also
2-mixed under alg. B.

For the second piece, the lifting partitions the Minkowski sum
Q0 + Q1 + Q2 + δ1 into a primary b01 + Q1 + Q2 + δ1 and a
secondary cell Q0 + (1, 2) + 32

60
(1, 2) + δ1. Lifting β induces a

mixed subdivision on the primary cell consisting of the cells b01 +
(3, 0) + Q2 + δ1 and b01 + Q1 + 32

60
(1, 2) + δ1. The former is non-

mixed and contains point (11,−2) corresponding to (11, 0) on the
slice which is also non-mixed under alg. B, whereas the latter cell
is 0-mixed, hence 1-mixed and contains the integer point (9, 0)
corresponding to point (9, 2) on the slice which is also 1-mixed
under alg. B.

The secondary cell Q0+(1, 2)+ 32
60

(1, 2)+δ1 is 1-mixed, hence 2-

mixed and contains the integer points (7, 2), (5, 4) corresponding
to the points (7, 4), (5, 6) of the slice respectively. These are also
2-mixed under alg. B. Table 6 illustrates cor. 7 and 8, where the
summands come from Q0, Q1 and Q2 respectively. Recall that
c01 := (1, 0) + δ10, c14 := (2, 4) + δ14 and c15 := (6, 0) + δ15.


