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DEFINITION. The Reinhardt diagram of a domain D � Cn is the
image of D under the map

(x 1; : : : ; x n ) 7! ( jx 1j ; : : : ; jx n j ) :

DEFINITION. The amoeba A f of a Laurent polynomial f (x ) (or of
the algebraic hypersurface f f (x ) = 0 g) is de�ned to be the image
of the hypersurface f � 1(0) under the map

Log : ( x 1; : : : ; x n ) 7! (log jx 1j ; : : : ; log jx n j ) :



TROPICAL GEOMETRY



TROPICAL GEOMETRY

�
�

�
�

�
�

�
�

A tropical line



TROPICAL GEOMETRY

�
�

�
�

�
�

�
�

A tropical line

A tropical polynomial is a concave, continuous, piecewise linear
function.



TROPICAL GEOMETRY

�
�

�
�

�
�

�
�

A tropical line

A tropical polynomial is a concave, continuous, piecewise linear
function.

The set of points where a tropical polynomial is non-di�eren tiable
is called its associated tropical algebraic hypersurface.



Tropical line intersecting tropical cubic transversally



Pandanus Tectorius



Monstera



Monstera leaf: a closer look



EXAMPLE. The amoeba of a complex line.

p(x; y ) = 1 + x + y
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EXAMPLE.

p(x; y ) = x + y + 6 xy + x 2y 2
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THEOREM. (Forsberg, Passare, Tsikh, 2000.) Let p(x ) be a Lau-
rent polynomial and let f M g denote the family of connected com-
ponents of the amoeba complement cA p(x ) : There exists an injective
function

� : f M g ! Zn \ N p(x )

such that the cone which is dual to N p(x ) at the point � (M ) coincides
with the recession cone of M: In particular, the number of connected
components of cA p(x ) cannot be smaller than the number of vertices
of N p(x ) and cannot exceed the number of integer points in N p(x ) :
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INVESTIGATING THE AMOEBA OF A POLYNOMIAL

1. What is the range of the map � : f M g ! Zn \ N p(x )?

2. Where in Rn is the amoeba A p(x ) located?

3. For a given order v 2 Zn \ N p(x ) ; �nd a point x 2 Rn which
belongs to the connected component of M � c A p(x ) with order v:



KNOWN RESULTS



KNOWN RESULTS

I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminan ts,
resultants and multidimensional determinants. Birkh•aus er, 1994.



KNOWN RESULTS

I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminan ts,
resultants and multidimensional determinants. Birkh•aus er, 1994.

T. Theobald. Computing amoebas, Experiment. Math. 11, no. 4
(2002), 513-526.



KNOWN RESULTS

I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminan ts,
resultants and multidimensional determinants. Birkh•aus er, 1994.

T. Theobald. Computing amoebas, Experiment. Math. 11, no. 4
(2002), 513-526.

M. Passare and H. Rullg�ard. Amoebas, Monge-Ampre measures,
and triangulations of the Newton polytope, Duke Math. J. 121,
no. 3 (2004), 481-507.



KNOWN RESULTS

I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminan ts,
resultants and multidimensional determinants. Birkh•aus er, 1994.

T. Theobald. Computing amoebas, Experiment. Math. 11, no. 4
(2002), 513-526.

M. Passare and H. Rullg�ard. Amoebas, Monge-Ampre measures,
and triangulations of the Newton polytope, Duke Math. J. 121,
no. 3 (2004), 481-507.

K. Purbhoo. A Nullstellensatz for amoebas, Duke Math. J. 141,
no. 3 (2008), 407-445.



KNOWN RESULTS

I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminan ts,
resultants and multidimensional determinants. Birkh•aus er, 1994.

T. Theobald. Computing amoebas, Experiment. Math. 11, no. 4
(2002), 513-526.

M. Passare and H. Rullg�ard. Amoebas, Monge-Ampre measures,
and triangulations of the Newton polytope, Duke Math. J. 121,
no. 3 (2004), 481-507.

K. Purbhoo. A Nullstellensatz for amoebas, Duke Math. J. 141,
no. 3 (2008), 407-445.

Aron Lagerberg, Super currents and tropical geometry, Math. Z.
270, no. 3-4 (2012), 1011-1050.



KNOWN RESULTS

I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminan ts,
resultants and multidimensional determinants. Birkh•aus er, 1994.

T. Theobald. Computing amoebas, Experiment. Math. 11, no. 4
(2002), 513-526.

M. Passare and H. Rullg�ard. Amoebas, Monge-Ampre measures,
and triangulations of the Newton polytope, Duke Math. J. 121,
no. 3 (2004), 481-507.

K. Purbhoo. A Nullstellensatz for amoebas, Duke Math. J. 141,
no. 3 (2008), 407-445.

Aron Lagerberg, Super currents and tropical geometry, Math. Z.
270, no. 3-4 (2012), 1011-1050.

T. Theobald and T. de Wol�. Approximating amoebas and coamoe -
bas by sums of squares, Math. Comp. 84, no. 291 (2015), 455-473 .



KNOWN RESULTS

I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminan ts,
resultants and multidimensional determinants. Birkh•aus er, 1994.

T. Theobald. Computing amoebas, Experiment. Math. 11, no. 4
(2002), 513-526.

M. Passare and H. Rullg�ard. Amoebas, Monge-Ampre measures,
and triangulations of the Newton polytope, Duke Math. J. 121,
no. 3 (2004), 481-507.

K. Purbhoo. A Nullstellensatz for amoebas, Duke Math. J. 141,
no. 3 (2008), 407-445.

Aron Lagerberg, Super currents and tropical geometry, Math. Z.
270, no. 3-4 (2012), 1011-1050.

T. Theobald and T. de Wol�. Approximating amoebas and coamoe -
bas by sums of squares, Math. Comp. 84, no. 291 (2015), 455-473 .

J. Forsg�ard, L.F. Matusevich, N. Mehlhop, and T. de Wol�. Lop-
sided approximation of amoebas, arXiv:1608.08663v1.



COMPACTIFIED AMOEBAS



COMPACTIFIED AMOEBAS

DEFINITION 1. (Gelfand, Kapranov, Zelevinsky, 1994.) The c om-
pacti�ed amoeba A f of a Laurent polynomial

f (x ) =
X

s2 S

asx s

(or, equivalently, of the algebraic hypersurface f f (x ) = 0 g) is de-
�ned to be the image of the hypersurface f � 1(0) under the moment
map

� S(x ) :=

P

s2 S
s � j x sj

P

s2 S
jx sj

:



Fig. 1. The a�ne and the compacti�ed amoebas of the polynomia l
x + y + x 2y 2 + xy= 2.



Fig. 2. The a�ne and the compacti�ed amoebas of the polynomia l
x + y + x 2y 2 + 2 xy



Fig. 3. The a�ne and the compacti�ed amoeba of the polynomial
x + 30 xy + 20 x 2y + x 3y + y 2



Fig. 4. The a�ne and the compacti�ed amoeba of the polynomial
x + x 2+ y + xy 3+ x 4y 2+3 x 3y +10 xy +10 x 2y +10 xy 2+15 x 2y 2+10 x 3y 2
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WEIGHTED COMPACTIFIED AMOEBAS

The Newton polytope N p(x ) of a Laurent polynomial p(x ) is de�ned
to be the convex hull in Rn of the support of p(x ) : We will often
drop some of the subindices to simplify the notation.

DEFINITION. Following the ideas of Zharkov, we de�ne the wei ghted
moment map associated with the algebraic hypersurface

f x 2 Cn : f (x ) :=
X

s2 S

asx s = 0 g

through

� f (x ) :=

P

s2 S
s � j asjj x sj

P

s2 S
jasjj x sj

:

It follows from the general theory of moment maps that

� f (Cn ) � N f :
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braic hypersurface
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we will mean the set � f (H ): We denote it by WCA (f ) :



DEFINITION. By the weighted compacti�ed amoeba of an alge-
braic hypersurface

H = f x 2 Cn : f (x ) = 0 g

we will mean the set � f (H ): We denote it by WCA (f ) :

Recall that the Hadamard power of order r 2 R of a polynomial
f (x ) =

P

s2 S
asx s is de�ned to be f [r ](x ) :=

P

s2 S
a r

sx s:



THEOREM 2. Let f be a polynomial in C[x � 1
1 ; � � � ; x � 1

n ] with the
Newton polytope N such that ja � j � 1 for every � 2 Vert( N ).
Assume that the function which assigns to each � 2 N \ Zn the real
number log ja � j is concave, and the subdivision of N dual to the
tropical hypersurface � associated to the tropical polynom ial f trop

de�ned by:
f trop ( � ) = max

� 2N \ Zn
f log ja � j + h�; � ig

is a triangulation. Then the set-theoretical limit

P 1
f := lim

r !1
W C A (f [r ]) (1)

is a polyhedral complex. Besides, if n = 2 then P 1
f is a simplicial

complex.
Moreover, its complement in N has the same topology of the com-

plement of the amoeba A of f , i.e.

� 0(Rn n A ) = � 0(N n P 1
f ) :



The connected components of the complement of P 1
f in the New-

ton polytope are not necessarily convex. The amoeba, the com -
pacti�ed amoeba and the associated polyhedral complex for t he
polynomial x + y + x 2y 2 + cxy are depicted in Figures and for
c = 1 =2 and c = 2 ; respectively.

Fig. 5. The a�ne and the compacti�ed amoebas of the polynomia l
x + y + x 2y 2 + xy= 2. The polyhedral complex coincides with the
compacti�ed amoeba of this polynomial.



Fig. 6. The a�ne amoeba, the compacti�ed amoeba and the poly-
hedral complex of the polynomial x + y + x 2y 2 + 2 xy



The amoeba, the compacti�ed amoeba and the associated polyh e-
dral complex for the polynomial x + y + xy 2 + x 2y + cxy are depicted
in Figures 7 and 8 for c = 1 =2 and c = 5 ; and respectively.

Fig. 7. The a�ne amoeba, the compacti�ed amoeba and the poly-
hedral complex of the polynomial x + y + xy 2 + x 2y + xy= 2



Fig. 8. The a�ne amoeba, the compacti�ed amoeba and the poly-
hedral complex of the polynomial x + y + xy 2 + x 2y + 5 xy



Fig. 9. The a�ne amoeba, the compacti�ed amoeba and the poly-
hedral complex of the polynomial x + 30 xy + 20 x 2y + x 3y + y 2



Fig. 10. The a�ne amoeba, the compacti�ed
amoeba and the polyhedral complex of the polynomial
1 + 3 x + 3 y + x 2y + 4 x 3y + xy 2 + 10 x 2y 2 + 4 xy 3



Fig. 11. The a�ne amoeba, the compacti�ed
amoeba, the weighted compacti�ed amoebas of the
1st, 2nd and 3rd Hadamard powers of the polynomial
x + x 2+ y + xy 3+ x 4y 2+3 x 3y +10 xy +10 x 2y +10 xy 2+15 x 2y 2+10 x 3y 2;
and a bounded component of its deformation vanishing at the l attice
point (2 ; 2)



OTHER COMBINATORIAL OBJECTS

ASSOCIATED WITH AN ALGEBRAIC HYPERSURFACE



OTHER COMBINATORIAL OBJECTS

ASSOCIATED WITH AN ALGEBRAIC HYPERSURFACE

M. Passare and H. Rullg�ard. Amoebas, Monge-Ampre measures,
and triangulations of the Newton polytope, Duke Math. J. 121,
no. 3 (2004), 481-507.



OTHER COMBINATORIAL OBJECTS

ASSOCIATED WITH AN ALGEBRAIC HYPERSURFACE

M. Passare and H. Rullg�ard. Amoebas, Monge-Ampre measures,
and triangulations of the Newton polytope, Duke Math. J. 121,
no. 3 (2004), 481-507.

G. Mikhalkin. Decomposition into pairs-of-pants for comple x al-
gebraic hypersurfaces, Topology 43, no. 5, (2004), 1035-10 65.



CONJECTURE 3. Let f (x 1; : : : ; x n ) 2 C[x � 1
1 ; : : : ; x � 1

1 ] be a Lau-
rent polynomial. Denote by A f � N f its compacti�ed amoeba
and by f M g the set of (nonempty) connected components of the
complement of A f in the Newton polytope N f :

We furthermore denote by � (M ) 2 N f \ Zn the order of such a
component.

There exists a polyhedral complex P f with the following proper-
ties:

1. P f � N f :

2. The polyhedral complex P f is a deformation retract of the
compacti�ed amoeba A f :

3. For any complement component M of N f n A f the only integer
point that belongs to this component is its order: M \ Zn = � (M ):
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OPEN QUESTIONS

1. Give explicit analytic formula for P f which works for all f .

2. Describe all f such that P f is a simplicial complex.

3. What are the vertices of the polyhedral complex P f ?

4. What is the volume of P f ?

5. How di�erent can the volumes of the connected components o f
N f n P f be?



A NEW ONLINE TOOL FOR AUTOMATED GENERATION

OF MATLAB CODE FOR DEPICTING AMOEBAS:

http://dvbogdanov.ru/?page=amoeba

PICTURES IN THE PRESENTATION HAVE BEEN GENERATED

BY MEANS OF THIS WEB-SERVICE
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